-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpurchase_info.py
50 lines (32 loc) · 1.94 KB
/
purchase_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pandas as pd
import numpy as np
import sys, getopt
from scipy import stats
def main(inputfile, outputfile):
df = pd.read_csv(inputfile)
df = df.dropna()
keep = np.where((df.transaction_type == 'purchase') & (df.num_items >= 0) & (df.total_order_value > 0))[0]
df = df.iloc[keep]
users = list(set(df['user_id']))
df['transaction_date'] = pd.to_datetime(df['transaction_date'])
first_purchase_amounts = []
for user in users:
tmin = min(df[df['user_id']==user]['transaction_date'])
first_purchase_amounts.append(df[(df['user_id']==user) & (df['transaction_date']==tmin)]['total_order_value'].iloc[0])
max_created_on = df[['user_id','transaction_date']].groupby('user_id').max().reset_index()[['user_id','transaction_date']]
max_created_on.columns = ['user_id','last_purch_date']
min_created_on = df[['user_id','transaction_date']].groupby('user_id').min().reset_index()[['user_id','transaction_date']]
min_created_on.columns = ['user_id','first_purch_date']
temp_list = map(list, zip(*[users,first_purchase_amounts]))
first_purchase_amount_df = pd.DataFrame(temp_list,columns=['user_id','first_purchase_amount'])
most_used_store = df[['user_id', 'store_id']].groupby('user_id').agg(lambda x: stats.mode(x['store_id'])[0]).reset_index()[['user_id', 'store_id']]
most_used_store.columns = ['user_id', 'most_used_store']
df_purchase_sum = df[['user_id','num_items','total_order_value','commission_value']].groupby('user_id').sum().reset_index()[['user_id','num_items','total_order_value','commission_value']]
df_purchase_sum.columns = ['user_id','num_items_purch','total_order_value','commission_value']
final_df = pd.merge(df_purchase_sum, first_purchase_amount_df, on='user_id')
final_df = pd.merge(final_df,max_created_on, on='user_id')
final_df = pd.merge(final_df,min_created_on, on='user_id')
final_df = pd.merge(final_df, most_used_store, on='user_id')
final_df.to_csv(outputfile)
if __name__ == '__main__':
main(inputfile, outputfile)