-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathppde_Heston_lookback.py
140 lines (117 loc) · 4.61 KB
/
ppde_Heston_lookback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
import numpy as np
import argparse
import tqdm
import os
import math
from lib.bsde import PPDE_Heston as FBSDE
from lib.options import Lookback
def sample_x0(batch_size, device):
sigma = 0.3
mu = 0.08
tau = 0.1
z = torch.randn(batch_size, 1, device=device)
s0 = torch.exp((mu-0.5*sigma**2)*tau + 0.3*math.sqrt(tau)*z) # lognormal
v0 = torch.ones_like(s0) * 0.04
x0 = torch.cat([s0,v0],1)
return x0
def write(msg, logfile, pbar):
pbar.write(msg)
with open(logfile, "a") as f:
f.write(msg)
f.write("\n")
def train(T,
n_steps,
d,
mu,
vol_of_vol,
kappa,
theta,
depth,
rnn_hidden,
ffn_hidden,
max_updates,
batch_size,
lag,
base_dir,
device,
method
):
logfile = os.path.join(base_dir, "log.txt")
ts = torch.linspace(0,T,n_steps+1, device=device)
lookback = Lookback(idx_traded = [0])
fbsde = FBSDE(d=d, mu=mu, vol_of_vol=vol_of_vol, kappa=kappa, theta=theta,
depth=depth, rnn_hidden=rnn_hidden, ffn_hidden=ffn_hidden)
fbsde.to(device)
optimizer = torch.optim.RMSprop(fbsde.parameters(), lr=0.001)
pbar = tqdm.tqdm(total=max_updates)
losses = []
for idx in range(max_updates):
optimizer.zero_grad()
x0 = sample_x0(batch_size, device)
if method=="bsde":
loss, _, _ = fbsde.fbsdeint(ts=ts, x0=x0, option=lookback, lag=lag)
else:
loss, _, _ = fbsde.conditional_expectation(ts=ts, x0=x0, option=lookback, lag=lag)
loss.backward()
optimizer.step()
losses.append(loss.cpu().item())
# testing
if idx%10 == 0:
with torch.no_grad():
x0 = torch.ones(5000,d,device=device) # we do monte carlo
x0[:,1] = x0[:,1]*0.04
loss, Y, payoff = fbsde.fbsdeint(ts=ts,x0=x0,option=lookback,lag=lag)
payoff = torch.exp(-mu*ts[-1])*payoff.mean()
pbar.update(10)
write("loss={:.4f}, Monte Carlo price={:.4f}, predicted={:.4f}".format(loss.item(),payoff.item(), Y[0,0,0].item()),logfile,pbar)
result = {"state":fbsde.state_dict(),
"loss":losses}
torch.save(result, os.path.join(base_dir, "result.pth.tar"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default='./numerical_results/', type=str)
parser.add_argument('--device', default=0, type=int)
parser.add_argument('--use_cuda', action='store_true', default=False)
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--batch_size', default=500, type=int)
parser.add_argument('--d', default=4, type=int)
parser.add_argument('--max_updates', default=5000, type=int)
parser.add_argument('--ffn_hidden', default=[20,20], nargs="+", type=int)
parser.add_argument('--rnn_hidden', default=20, type=int)
parser.add_argument('--depth', default=3, type=int)
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--n_steps', default=100, type=int, help="number of steps in time discrretisation")
parser.add_argument('--lag', default=10, type=int, help="lag in fine time discretisation to create coarse time discretisation")
parser.add_argument('--mu', default=0.05, type=float, help="risk free rate")
parser.add_argument('--vol_of_vol', default=0.05, type=float, help="vol of vol")
parser.add_argument('--kappa', default=0.8, type=float, help="mean reverting process coef")
parser.add_argument('--theta', default=0.3, type=float, help="mean reverting")
parser.add_argument('--method', default="bsde", type=str, help="learning method", choices=["bsde","orthogonal"])
args = parser.parse_args()
assert args.d==2, "Heston implementation is for d=2"
if torch.cuda.is_available() and args.use_cuda:
device = "cuda:{}".format(args.device)
else:
device="cpu"
results_path = os.path.join(args.base_dir, "Heston", args.method)
if not os.path.exists(results_path):
os.makedirs(results_path)
train(T=args.T,
n_steps=args.n_steps,
d=args.d,
mu=args.mu,
vol_of_vol=args.vol_of_vol,
kappa=args.kappa,
theta=args.theta,
depth=args.depth,
rnn_hidden=args.rnn_hidden,
ffn_hidden=args.ffn_hidden,
max_updates=args.max_updates,
batch_size=args.batch_size,
lag=args.lag,
base_dir=results_path,
device=device,
method=args.method
)