-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmain.lua
144 lines (129 loc) · 4.35 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
-- Tejas D Kulkarni
-- Usage: th main.lua
require 'nn'
require 'randomkit'
require 'optim'
require 'image'
require 'dataset-mnist'
require 'cutorch'
require 'xlua'
require 'Base'
require 'optim'
require 'image'
require 'sys'
require 'pl'
--------------------------- Init ------------------------------
params = lapp[[
-s,--save (default "logs") subdirectory to save logs
-m,--model (default "convnet") type of model tor train: convnet | mlp | linear
-p,--plot plot while training
-r,--lr (default 0.0005) learning rate
-i,--max_epochs (default 200) maximum nb of iterations per batch, for LBFGS
--bsize (default 100) bsize
--image_width (default 32)
--template_width (default 10)
--num_entities (default 10) number of entities
--rnn_size (default 100)
--seq_length (default 1)
--layers (default 1)
--init_weight (default 0.1)
--max_grad_norm (default 5)
]]
Entity_FACTOR = 5e3
require 'Entity'
config = {
learningRate = params.lr,
momentumDecay = 0.1,
updateDecay = 0.01
}
require 'model'
trainLogger = optim.Logger(paths.concat(params.save .. '/', 'train.log'))
testLogger = optim.Logger(paths.concat(params.save .. '/', 'test.log'))
trainData = mnist.loadTrainSet(nbTrainingPatches, geometry)
trainData.data = trainData.data/255
testData = mnist.loadTestSet(nbTestingPatches, geometry)
testData.data = testData.data/255
fulldata = trainData.data:clone()
--------------------------- Helper functions ------------------------------
function get_batch(t, data)
local inputs = torch.Tensor(params.bsize,1,32,32)
local k = 1
for i = t,math.min(t+params.bsize-1,data:size(1)) do
-- load new sample
local sample = data[i]
local input = sample[1]:clone()
-- local _,target = sample[2]:clone():max(1)
inputs[{k,1,{},{}}] = input
k = k + 1
end
inputs = inputs:cuda()
return inputs
end
function init()
print("Network parameters:")
print(params)
reset_state(state)
local epoch = 0
local beginning_time = torch.tic()
local start_time = torch.tic()
print("Starting training.")
print(fulldata:size())
end
function train()
for epc = 1,params.max_epochs do
print('epoch #', epc)
local cntr = 0
torch.save(params.save .. '/network.t7', model.rnns[1])
torch.save(params.save .. '/params.t7', params)
for t = 1,fulldata:size(1),params.bsize do
xlua.progress(t, fulldata:size(1))
-- create mini batch
local inputs = get_batch(t, fulldata)
local perp, output = fp(inputs)
bp(inputs)
cutorch.synchronize()
collectgarbage()
if params.plot and math.fmod(cntr, 20) == 0 then
test()
end
cntr = cntr + 1
trainLogger:add{['% perp (train set)'] = perp}
trainLogger:style{['% perp (train set)'] = '-'}
-- trainLogger:plot()
end
end
end
function test()
local test_err = 0
for tt = 1,1 do--trainData:size(),params.bsize do
local inputs = get_batch(tt, testData)
local test_perp, test_output = fp(inputs)
test_err = test_perp + test_err
local entity_imgs = {}; entity_fg_imgs={};
for pp = 1,params.num_entities do
entity_imgs[pp] = extract_node(model.rnns[1], 'entity_' .. pp).data.module.output:double()
-- entity_fg_imgs[pp] = extract_node(model.rnns[1], 'entity_fg_' .. pp).data.module.output:double()
end
local en_imgs = {}; en_fg_imgs={};
counter=1
for bb = 1,MAX_IMAGES_TO_DISPLAY do
for pp=1,params.num_entities do
en_imgs[counter] =entity_imgs[pp][bb]
-- en_fg_imgs[counter] = entity_fg_imgs[pp][bb]
counter = counter + 1
end
end
if params.plot then
window1=image.display({image=test_output[{{1,MAX_IMAGES_TO_DISPLAY},{},{},{}}], nrow=1, legend='Predictions', win=window1})
window2=image.display({image=inputs[{{1,MAX_IMAGES_TO_DISPLAY},{},{},{}}], nrow=1, legend='Targets', win=window2})
window3=image.display({image=en_imgs, nrow=params.num_entities, legend='Entities', win=window3})
end
end
testLogger:add{['% perp (test set)'] = test_err}
testLogger:style{['% perp (test set)'] = '-'}
end
----------------------- Run --------------------
MAX_IMAGES_TO_DISPLAY = 20 --number of digits to display
setup(false)
init()
train()