|
| 1 | +import inspect |
| 2 | +from typing import Any, Dict, Generator, Iterator, List, Optional, Union |
| 3 | + |
| 4 | +import json5 |
| 5 | +from ms_agent.llm import LLM |
| 6 | +from ms_agent.llm.utils import Message, Tool, ToolCall |
| 7 | +from ms_agent.utils import assert_package_exist, get_logger, retry |
| 8 | +from omegaconf import DictConfig, OmegaConf |
| 9 | + |
| 10 | + |
| 11 | +class Anthropic(LLM): |
| 12 | + |
| 13 | + def __init__( |
| 14 | + self, |
| 15 | + config: DictConfig, |
| 16 | + base_url: Optional[str] = None, |
| 17 | + api_key: Optional[str] = None, |
| 18 | + ): |
| 19 | + super().__init__(config) |
| 20 | + assert_package_exist('anthropic', 'anthropic') |
| 21 | + import anthropic |
| 22 | + |
| 23 | + self.model: str = config.llm.model |
| 24 | + |
| 25 | + base_url = base_url or config.llm.get('anthropic_base_url') |
| 26 | + api_key = api_key or config.llm.get('anthropic_api_key') |
| 27 | + |
| 28 | + if not api_key: |
| 29 | + raise ValueError('Anthropic API key is required.') |
| 30 | + |
| 31 | + self.client = anthropic.Anthropic( |
| 32 | + api_key=api_key, |
| 33 | + base_url=base_url, |
| 34 | + ) |
| 35 | + |
| 36 | + self.args: Dict = OmegaConf.to_container( |
| 37 | + getattr(config, 'generation_config', DictConfig({}))) |
| 38 | + |
| 39 | + def format_tools(self, |
| 40 | + tools: Optional[List[Tool]]) -> Optional[List[Dict]]: |
| 41 | + if not tools: |
| 42 | + return None |
| 43 | + |
| 44 | + formatted_tools = [] |
| 45 | + for tool in tools: |
| 46 | + formatted_tools.append({ |
| 47 | + 'name': tool['tool_name'], |
| 48 | + 'description': tool.get('description', ''), |
| 49 | + 'input_schema': { |
| 50 | + 'type': 'object', |
| 51 | + 'properties': tool.get('parameters', |
| 52 | + {}).get('properties', {}), |
| 53 | + 'required': tool.get('parameters', {}).get('required', []), |
| 54 | + } |
| 55 | + }) |
| 56 | + return formatted_tools |
| 57 | + |
| 58 | + def _format_input_message(self, |
| 59 | + messages: List[Message]) -> List[Dict[str, Any]]: |
| 60 | + """Converts a list of Message objects into the format expected by the Anthropic API. |
| 61 | +
|
| 62 | + Args: |
| 63 | + messages (`List[Message]`): List of Message objects. |
| 64 | +
|
| 65 | + Returns: |
| 66 | + List[Dict[str, Any]]: List of dictionaries compatible with Anthropic's input format. |
| 67 | + """ |
| 68 | + formatted_messages = [] |
| 69 | + for msg in messages: |
| 70 | + content = [] |
| 71 | + |
| 72 | + if msg.content: |
| 73 | + content.append({'type': 'text', 'text': msg.content}) |
| 74 | + |
| 75 | + if msg.tool_calls: |
| 76 | + for tool_call in msg.tool_calls: |
| 77 | + content.append({ |
| 78 | + 'type': 'tool_use', |
| 79 | + 'id': tool_call['id'], |
| 80 | + 'name': tool_call['tool_name'], |
| 81 | + 'input': tool_call.get('arguments', {}) |
| 82 | + }) |
| 83 | + |
| 84 | + if msg.role == 'tool': |
| 85 | + formatted_messages.append({ |
| 86 | + 'role': |
| 87 | + 'user', |
| 88 | + 'content': [{ |
| 89 | + 'type': 'tool_result', |
| 90 | + 'tool_use_id': msg.tool_call_id, |
| 91 | + 'content': msg.content |
| 92 | + }] |
| 93 | + }) |
| 94 | + continue |
| 95 | + |
| 96 | + formatted_messages.append({'role': msg.role, 'content': content}) |
| 97 | + return formatted_messages |
| 98 | + |
| 99 | + def _call_llm(self, |
| 100 | + messages: List[Message], |
| 101 | + tools: Optional[List[Dict]] = None, |
| 102 | + stream: bool = False, |
| 103 | + **kwargs) -> Any: |
| 104 | + |
| 105 | + formatted_messages = self._format_input_message(messages) |
| 106 | + formatted_messages = [m for m in formatted_messages if m['content']] |
| 107 | + |
| 108 | + system = None |
| 109 | + if formatted_messages[0]['role'] == 'system': |
| 110 | + system = formatted_messages[0]['content'] |
| 111 | + formatted_messages = formatted_messages[1:] |
| 112 | + params = { |
| 113 | + 'model': self.model, |
| 114 | + 'messages': formatted_messages, |
| 115 | + 'max_tokens': kwargs.pop('max_tokens', 1024), |
| 116 | + } |
| 117 | + |
| 118 | + if system: |
| 119 | + params['system'] = system |
| 120 | + if tools: |
| 121 | + params['tools'] = tools |
| 122 | + params.update(kwargs) |
| 123 | + |
| 124 | + if stream: |
| 125 | + return self.client.messages.stream(**params) |
| 126 | + else: |
| 127 | + return self.client.messages.create(**params) |
| 128 | + |
| 129 | + @retry(max_attempts=3, delay=1.0) |
| 130 | + def generate(self, |
| 131 | + messages: List[Message], |
| 132 | + tools: Optional[List[Tool]] = None, |
| 133 | + max_continue_runs: Optional[int] = None, |
| 134 | + **kwargs) -> Union[Message, Generator[Message, None, None]]: |
| 135 | + |
| 136 | + formatted_tools = self.format_tools(tools) |
| 137 | + args = self.args.copy() |
| 138 | + args.update(kwargs) |
| 139 | + stream = args.pop('stream', False) |
| 140 | + |
| 141 | + sig_params = inspect.signature(self.client.messages.create).parameters |
| 142 | + filtered_args = {k: v for k, v in args.items() if k in sig_params} |
| 143 | + |
| 144 | + completion = self._call_llm(messages, formatted_tools, stream, |
| 145 | + **filtered_args) |
| 146 | + |
| 147 | + if stream: |
| 148 | + return self._stream_format_output_message(completion) |
| 149 | + else: |
| 150 | + return self._format_output_message(completion) |
| 151 | + |
| 152 | + def _stream_format_output_message(self, |
| 153 | + stream_manager) -> Iterator[Message]: |
| 154 | + current_message = Message( |
| 155 | + role='assistant', |
| 156 | + content='', |
| 157 | + tool_calls=[], |
| 158 | + id='', |
| 159 | + completion_tokens=0, |
| 160 | + prompt_tokens=0, |
| 161 | + api_calls=1, |
| 162 | + partial=True, |
| 163 | + ) |
| 164 | + tool_call_id_map = {} # index -> tool_call_id (用于去重 yield) |
| 165 | + with stream_manager as stream: |
| 166 | + for event in stream: |
| 167 | + event_type = getattr(event, 'type') |
| 168 | + if event_type == 'message_start': |
| 169 | + msg = event.message |
| 170 | + current_message.id = msg.id |
| 171 | + tool_call_id_map = {} |
| 172 | + yield current_message |
| 173 | + elif event_type == 'text': |
| 174 | + current_message.content = event.snapshot |
| 175 | + yield current_message |
| 176 | + elif event_type == 'message_stop': |
| 177 | + final_msg = getattr(event, 'message') |
| 178 | + full_content = '' |
| 179 | + used_tool_call_ids = set() |
| 180 | + for idx, block in enumerate(event.message.content): |
| 181 | + if block is None: |
| 182 | + continue |
| 183 | + if block.type == 'text': |
| 184 | + full_content += block.text |
| 185 | + elif block.type == 'tool_use': |
| 186 | + tool_call_id = tool_call_id_map.get(idx) |
| 187 | + tool_call = ToolCall( |
| 188 | + id=tool_call_id, |
| 189 | + index=len(current_message.tool_calls), |
| 190 | + type='function', |
| 191 | + tool_name=block.name, |
| 192 | + arguments=json5.dumps(block.input), |
| 193 | + ) |
| 194 | + current_message.tool_calls.append(tool_call) |
| 195 | + used_tool_call_ids.add(tool_call_id) |
| 196 | + current_message.content = full_content |
| 197 | + current_message.partial = False |
| 198 | + current_message.completion_tokens = getattr( |
| 199 | + final_msg.usage, 'output_tokens', |
| 200 | + current_message.completion_tokens) |
| 201 | + current_message.prompt_tokens = getattr( |
| 202 | + final_msg.usage, 'input_tokens', |
| 203 | + current_message.prompt_tokens) |
| 204 | + |
| 205 | + yield current_message |
| 206 | + |
| 207 | + @staticmethod |
| 208 | + def _format_output_message(completion) -> Message: |
| 209 | + """ |
| 210 | + Formats the full non-streaming response from Anthropic into a Message object. |
| 211 | +
|
| 212 | + Args: |
| 213 | + completion: The raw response from the Anthropic API (e.g., a Message object from anthropic SDK). |
| 214 | +
|
| 215 | + Returns: |
| 216 | + Message: A Message object containing the final response. |
| 217 | + """ |
| 218 | + # Extract text content |
| 219 | + content = '' |
| 220 | + tool_calls = [] |
| 221 | + |
| 222 | + # Anthropic responses have a list of content blocks |
| 223 | + for block in completion.content: |
| 224 | + if block.type == 'text': |
| 225 | + content += block.text |
| 226 | + elif block.type == 'tool_use': |
| 227 | + tool_calls.append( |
| 228 | + ToolCall( |
| 229 | + id=block.id, |
| 230 | + index=len(tool_calls), # index based on appearance |
| 231 | + type= |
| 232 | + 'function', # or "tool_use" depending on your schema |
| 233 | + arguments=block.input, |
| 234 | + tool_name=block.name, |
| 235 | + )) |
| 236 | + |
| 237 | + # Anthropic does not have a native "reasoning_content" field |
| 238 | + reasoning_content = '' |
| 239 | + |
| 240 | + return Message( |
| 241 | + role='assistant', |
| 242 | + content=content, |
| 243 | + reasoning_content=reasoning_content, |
| 244 | + tool_calls=tool_calls if tool_calls else None, |
| 245 | + id=completion.id, |
| 246 | + prompt_tokens=completion.usage.input_tokens, |
| 247 | + completion_tokens=completion.usage.output_tokens, |
| 248 | + ) |
| 249 | + |
| 250 | + |
| 251 | +if __name__ == '__main__': |
| 252 | + import os |
| 253 | + config = { |
| 254 | + 'llm': { |
| 255 | + 'model': 'Qwen/Qwen2.5-VL-72B-Instruct', |
| 256 | + 'anthropic_api_key': os.getenv('MODELSCOPE_API_KEY'), |
| 257 | + 'anthropic_base_url': 'https://api-inference.modelscope.cn' |
| 258 | + }, |
| 259 | + 'generation_config': { |
| 260 | + 'stream': True, |
| 261 | + } |
| 262 | + } |
| 263 | + tools = [{ |
| 264 | + 'tool_name': 'get_weather', |
| 265 | + 'description': 'Get the current weather in a given location', |
| 266 | + 'parameters': { |
| 267 | + 'type': 'object', |
| 268 | + 'properties': { |
| 269 | + 'location': { |
| 270 | + 'type': 'string', |
| 271 | + 'description': 'City and state' |
| 272 | + }, |
| 273 | + 'unit': { |
| 274 | + 'type': 'string', |
| 275 | + 'enum': ['celsius', 'fahrenheit'] |
| 276 | + } |
| 277 | + }, |
| 278 | + 'required': ['location'] |
| 279 | + } |
| 280 | + }] |
| 281 | + |
| 282 | + messages = [Message(role='user', content='描述杭州,300字')] |
| 283 | + # messages = [Message(role='user', content='去伦敦现在该带什么样的衣服?')] |
| 284 | + |
| 285 | + llm = Anthropic(config=OmegaConf.create(config)) |
| 286 | + result = llm.generate(messages, tools=tools) |
| 287 | + for chunk in result: |
| 288 | + print(chunk) |
0 commit comments