Skip to content

Commit 4c19e27

Browse files
committed
fix: some parameters are set explicitly to silence warnings
1 parent d42fc29 commit 4c19e27

File tree

2 files changed

+6
-5
lines changed

2 files changed

+6
-5
lines changed

examples/multilabel_svm.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -27,9 +27,10 @@
2727
plt.show()
2828

2929
learner = ActiveLearner(
30-
estimator=OneVsRestClassifier(SVC(probability=True)),
30+
estimator=OneVsRestClassifier(SVC(probability=True, gamma='auto')),
3131
query_strategy=avg_score,
3232
X_training=X_initial, y_training=y_initial
3333
)
3434

35-
learner.query(X_pool)
35+
query_idx, query_inst = learner.query(X_pool)
36+
learner.teach(X_pool[query_idx], y_pool[query_idx])

tests/core_tests.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -642,7 +642,7 @@ def test_keras(self):
642642

643643
def test_sklearn(self):
644644
learner = modAL.models.learners.ActiveLearner(
645-
estimator=RandomForestClassifier(),
645+
estimator=RandomForestClassifier(n_estimators=10),
646646
X_training=np.random.rand(10, 10),
647647
y_training=np.random.randint(0, 2, size=(10,))
648648
)
@@ -667,7 +667,7 @@ def test_sparse_matrices(self):
667667
initial_idx = np.random.choice(range(n_samples), size=5, replace=False)
668668

669669
learner = modAL.models.learners.ActiveLearner(
670-
estimator=RandomForestClassifier(), query_strategy=query_strategy,
670+
estimator=RandomForestClassifier(n_estimators=10), query_strategy=query_strategy,
671671
X_training=X_pool[initial_idx], y_training=y_pool[initial_idx]
672672
)
673673
query_idx, query_inst = learner.query(X_pool)
@@ -949,7 +949,7 @@ def test_strategies(self):
949949
X_training = np.random.rand(n_pool_instances, 5)
950950
y_training = np.random.randint(0, 2, size=(n_pool_instances, n_classes))
951951
X_pool = np.random.rand(n_pool_instances, 5)
952-
classifier = OneVsRestClassifier(SVC(probability=True))
952+
classifier = OneVsRestClassifier(SVC(probability=True, gamma='auto'))
953953
classifier.fit(X_training, y_training)
954954
modAL.multilabel.mean_max_loss(classifier, X_pool, n_query_instances)
955955
modAL.multilabel.max_loss(classifier, X_pool, n_query_instances)

0 commit comments

Comments
 (0)