@@ -66,11 +66,9 @@ def __init__(self,
66
66
self .on_transformed = on_transformed
67
67
68
68
self .X_training = X_training
69
- self .Xt_training = None
70
69
self .y_training = y_training
71
70
if X_training is not None :
72
71
self ._fit_to_known (bootstrap = bootstrap_init , ** fit_kwargs )
73
- self .Xt_training = self .transform_without_estimating (self .X_training ) if self .on_transformed else None
74
72
75
73
assert isinstance (force_all_finite , bool ), 'force_all_finite must be a bool'
76
74
self .force_all_finite = force_all_finite
@@ -92,15 +90,10 @@ def _add_training_data(self, X: modALinput, y: modALinput) -> None:
92
90
93
91
if self .X_training is None :
94
92
self .X_training = X
95
- self .Xt_training = self .transform_without_estimating (self .X_training ) if self .on_transformed else None
96
93
self .y_training = y
97
94
else :
98
95
try :
99
96
self .X_training = data_vstack ((self .X_training , X ))
100
- self .Xt_training = data_vstack ((
101
- self .Xt_training ,
102
- self .transform_without_estimating (X )
103
- )) if self .on_transformed else None
104
97
self .y_training = data_vstack ((self .y_training , y ))
105
98
except ValueError :
106
99
raise ValueError ('the dimensions of the new training data and label must'
@@ -213,7 +206,6 @@ def fit(self, X: modALinput, y: modALinput, bootstrap: bool = False, **fit_kwarg
213
206
check_X_y (X , y , accept_sparse = True , ensure_2d = False , allow_nd = True , multi_output = True , dtype = None ,
214
207
force_all_finite = self .force_all_finite )
215
208
self .X_training , self .y_training = X , y
216
- self .Xt_training = self .transform_without_estimating (self .X_training ) if self .on_transformed else None
217
209
return self ._fit_to_known (bootstrap = bootstrap , ** fit_kwargs )
218
210
219
211
def predict (self , X : modALinput , ** predict_kwargs ) -> Any :
0 commit comments