-{"count_events": {"latest": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Count events in each time window", "example": "count_events.ipynb", "generationDate": "2025-09-16:12-25", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0-rc41", "name": "count_events", "spec": {"filename": "count_events.py", "image": "mlrun/mlrun", "kind": "monitoring_application", "requirements": null}, "version": "1.0.0", "assets": {"example": "src/count_events.ipynb", "source": "src/count_events.py", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Count events in each time window", "example": "count_events.ipynb", "generationDate": "2025-09-16:12-25", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0-rc41", "name": "count_events", "spec": {"filename": "count_events.py", "image": "mlrun/mlrun", "kind": "monitoring_application", "requirements": null}, "version": "1.0.0", "assets": {"example": "src/count_events.ipynb", "source": "src/count_events.py", "docs": "static/documentation.html"}}}, "histogram_data_drift": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "structured-ML"], "description": "Model-monitoring application for detecting and visualizing data drift", "example": "histogram_data_drift.ipynb", "generationDate": "2025-11-06", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0-rc41", "name": "histogram_data_drift", "spec": {"filename": "histogram_data_drift.py", "image": "mlrun/mlrun", "kind": "monitoring_application", "requirements": ["plotly~=5.23", "pandas"]}, "version": "1.0.0", "assets": {"example": "src/histogram_data_drift.ipynb", "source": "src/histogram_data_drift.py", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "structured-ML"], "description": "Model-monitoring application for detecting and visualizing data drift", "example": "histogram_data_drift.ipynb", "generationDate": "2025-11-06", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0-rc41", "name": "histogram_data_drift", "spec": {"filename": "histogram_data_drift.py", "image": "mlrun/mlrun", "kind": "monitoring_application", "requirements": ["plotly~=5.23", "pandas"]}, "version": "1.0.0", "assets": {"example": "src/histogram_data_drift.ipynb", "source": "src/histogram_data_drift.py", "docs": "static/documentation.html"}}}, "openai_proxy_app": {"latest": {"apiVersion": "v1", "categories": ["genai"], "description": "OpenAI application runtime based on fastapi", "example": "openai_proxy_app.ipynb", "generationDate": "2025-11-11:12-25", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0", "name": "openai_proxy_app", "spec": {"filename": "openai_proxy_app.py", "image": "mlrun/mlrun", "requirements": ["fastapi>=0.110,<1.0", "requests>=2.31,<3.0"], "kind": "generic"}, "version": "1.0.0", "assets": {"example": "src/openai_proxy_app.ipynb", "source": "src/openai_proxy_app.py", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["genai"], "description": "OpenAI application runtime based on fastapi", "example": "openai_proxy_app.ipynb", "generationDate": "2025-11-11:12-25", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0", "name": "openai_proxy_app", "spec": {"filename": "openai_proxy_app.py", "image": "mlrun/mlrun", "requirements": ["fastapi>=0.110,<1.0", "requests>=2.31,<3.0"], "kind": "generic"}, "version": "1.0.0", "assets": {"example": "src/openai_proxy_app.ipynb", "source": "src/openai_proxy_app.py", "docs": "static/documentation.html"}}}, "evidently_iris": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "structured-ML"], "description": "Demonstrates Evidently integration in MLRun for data quality and drift monitoring using the Iris dataset", "example": "evidently_iris.ipynb", "generationDate": "2025-11-09", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0-rc41", "name": "evidently_iris", "spec": {"filename": "evidently_iris.py", "image": "mlrun/mlrun", "kind": "monitoring_application", "requirements": ["scikit-learn~=1.5.2", "evidently~=0.7.5", "pandas"]}, "version": "1.0.0", "assets": {"example": "src/evidently_iris.ipynb", "source": "src/evidently_iris.py", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "structured-ML"], "description": "Demonstrates Evidently integration in MLRun for data quality and drift monitoring using the Iris dataset", "example": "evidently_iris.ipynb", "generationDate": "2025-11-09", "hidden": false, "labels": {"author": "Iguazio"}, "mlrunVersion": "1.10.0-rc41", "name": "evidently_iris", "spec": {"filename": "evidently_iris.py", "image": "mlrun/mlrun", "kind": "monitoring_application", "requirements": ["scikit-learn~=1.5.2", "evidently~=0.7.5", "pandas"]}, "version": "1.0.0", "assets": {"example": "src/evidently_iris.ipynb", "source": "src/evidently_iris.py", "docs": "static/documentation.html"}}}}
0 commit comments