Skip to content

[FR] Compatibility with MLflow 2.0 #96

@dbczumar

Description

@dbczumar

Thank you for submitting a feature request. Before proceeding, please review MLflow's Issue Policy for feature requests and the MLflow Contributing Guide.

Please fill in this feature request template to ensure a timely and thorough response.

Willingness to contribute

The MLflow Community encourages new feature contributions. Would you or another member of your organization be willing to contribute an implementation of this feature (as an enhancement to the MLflow TorchServe Deployment plugin code base)?

  • Yes. I can contribute this feature independently.
  • Yes. I would be willing to contribute this feature with guidance from the MLflow community.
  • No. I cannot contribute this feature at this time.

Proposal Summary

In MLflow 2.0 (scheduled for release on Nov. 14), we will be making small modifications to the MLflow Model Server's RESTful scoring protocol (documented here: https://output.circle-artifacts.com/output/job/bb07270e-1101-421c-901c-01e72bc7b6df/artifacts/0/docs/build/html/models.html#deploy-mlflow-models) and the MLflow Deployment Client predict() API (documented here: https://output.circle-artifacts.com/output/job/bb07270e-1101-421c-901c-01e72bc7b6df/artifacts/0/docs/build/html/python_api/mlflow.deployments.html#mlflow.deployments.BaseDeploymentClient.predict).

For compatibility with MLflow 2.0, the mlflow-torchserve plugin will need to be updated to conform to the new scoring protocol and Deployment Client interface. The MLflow maintainers are happy to assist with this process, and we apologize for the short notice.

Motivation

  • What is the use case for this feature? Provide a richer, more extensible scoring protocol and broaden the deployment client prediction interface beyond dataframe inputs.
  • Why is this use case valuable to support for MLflow TorchServe Deployment plugin users in general? Necessary for compatibility for MLflow 2.0
  • Why is this use case valuable to support for your project(s) or organization? ^
  • Why is it currently difficult to achieve this use case? Without these changes, the mlflow-torchserve plugin will break in MLflow 2.0.

What component(s) does this feature affect?

Components

  • area/deploy: Main deployment plugin logic
  • area/build: Build and test infrastructure for MLflow TorchServe Deployment Plugin
  • area/docs: MLflow TorchServe Deployment Plugin documentation pages
  • area/examples: Example code

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions