|
2 | 2 |
|
3 | 3 | import json
|
4 | 4 | from dataclasses import asdict, dataclass, field
|
5 |
| -from typing import Dict, List, Literal, Optional, Tuple, Union |
6 |
| - |
7 |
| - |
8 |
| -@dataclass |
9 |
| -class ResponseFormat: |
10 |
| - """The response format dataclass. |
11 |
| -
|
12 |
| - Parameters |
13 |
| - ---------- |
14 |
| - type : Literal["text", "json_object"] |
15 |
| - The type of response format. Default: "text". |
16 |
| -
|
17 |
| - schema : Optional[str] |
18 |
| - The JSON schema string for the JSON response format. If None, a legal json string without |
19 |
| - special restrictions will be generated. |
20 |
| -
|
21 |
| - Could be specified when the response format is "json_object". Default: None. |
22 |
| - """ |
23 |
| - |
24 |
| - type: Literal["text", "json_object"] = "text" |
25 |
| - schema: Optional[str] = None |
26 |
| - |
27 |
| - def __post_init__(self): |
28 |
| - if self.schema is not None and self.type != "json_object": |
29 |
| - raise ValueError("JSON schema is only supported in JSON response format") |
30 |
| - |
31 |
| - |
32 |
| -@dataclass |
33 |
| -class DebugConfig: |
34 |
| - """The debug configuration dataclass.Parameters |
35 |
| - ---------- |
36 |
| - ignore_eos : bool |
37 |
| - When it is true, ignore the eos token and generate tokens until `max_tokens`. |
38 |
| - Default is set to False. |
39 |
| -
|
40 |
| - pinned_system_prompt : bool |
41 |
| - Whether the input and generated data pinned in engine. Default is set to False. |
42 |
| - This can be used for system prompt or other purpose, if the data is aimed to be |
43 |
| - kept all the time. |
44 |
| -
|
45 |
| - special_request: Optional[string] |
46 |
| - Special requests to send to engine |
47 |
| - """ |
48 |
| - |
49 |
| - ignore_eos: bool = False |
50 |
| - pinned_system_prompt: bool = False |
51 |
| - special_request: Optional[Literal["query_engine_metrics"]] = None |
52 |
| - |
53 |
| - |
54 |
| -@dataclass |
55 |
| -class GenerationConfig: # pylint: disable=too-many-instance-attributes |
56 |
| - """The generation configuration dataclass. |
57 |
| -
|
58 |
| - Parameters |
59 |
| - ---------- |
60 |
| - n : int |
61 |
| - How many chat completion choices to generate for each input message. |
62 |
| -
|
63 |
| - temperature : Optional[float] |
64 |
| - The value that applies to logits and modulates the next token probabilities. |
65 |
| -
|
66 |
| - top_p : Optional[float] |
67 |
| - In sampling, only the most probable tokens with probabilities summed up to |
68 |
| - `top_p` are kept for sampling. |
69 |
| -
|
70 |
| - frequency_penalty : Optional[float] |
71 |
| - Positive values penalize new tokens based on their existing frequency |
72 |
| - in the text so far, decreasing the model's likelihood to repeat the same |
73 |
| - line verbatim. |
74 |
| -
|
75 |
| - presence_penalty : Optional[float] |
76 |
| - Positive values penalize new tokens based on whether they appear in the text |
77 |
| - so far, increasing the model's likelihood to talk about new topics. |
78 |
| -
|
79 |
| - repetition_penalty : float |
80 |
| - The penalty term that applies to logits to control token repetition in generation. |
81 |
| - It will be suppressed when any of frequency_penalty and presence_penalty is |
82 |
| - non-zero. |
83 |
| -
|
84 |
| - logprobs : bool |
85 |
| - Whether to return log probabilities of the output tokens or not. |
86 |
| - If true, the log probabilities of each output token will be returned. |
87 |
| -
|
88 |
| - top_logprobs : int |
89 |
| - An integer between 0 and 5 specifying the number of most likely |
90 |
| - tokens to return at each token position, each with an associated |
91 |
| - log probability. |
92 |
| - `logprobs` must be set to True if this parameter is used. |
93 |
| -
|
94 |
| - logit_bias : Optional[Dict[int, float]] |
95 |
| - The bias logit value added to selected tokens prior to sampling. |
96 |
| -
|
97 |
| - max_tokens : Optional[int] |
98 |
| - The maximum number of generated tokens, |
99 |
| - or None, in which case the generation will not stop |
100 |
| - until exceeding model capability or hit any stop criteria. |
101 |
| -
|
102 |
| - seed : Optional[int] |
103 |
| - The random seed of the generation. |
104 |
| - The seed will be a random value if not specified. |
105 |
| -
|
106 |
| - stop_strs : List[str] |
107 |
| - The list of strings that mark the end of generation. |
108 |
| -
|
109 |
| - stop_token_ids : List[int] |
110 |
| - The list of token ids that mark the end of generation. |
111 |
| -
|
112 |
| - response_format : ResponseFormat |
113 |
| - The response format of the generation output. |
114 |
| -
|
115 |
| - debug_config : Optional[DebugConfig] |
116 |
| - The optional debug configuration. |
117 |
| - """ |
118 |
| - |
119 |
| - n: int = 1 |
120 |
| - temperature: Optional[float] = None |
121 |
| - top_p: Optional[float] = None |
122 |
| - frequency_penalty: Optional[float] = None |
123 |
| - presence_penalty: Optional[float] = None |
124 |
| - repetition_penalty: float = 1.0 |
125 |
| - logprobs: bool = False |
126 |
| - top_logprobs: int = 0 |
127 |
| - logit_bias: Optional[Dict[int, float]] = field(default_factory=dict) # type: ignore |
128 |
| - |
129 |
| - max_tokens: Optional[int] = 128 |
130 |
| - seed: Optional[int] = None |
131 |
| - stop_strs: List[str] = field(default_factory=list) |
132 |
| - stop_token_ids: List[int] = field(default_factory=list) |
133 |
| - |
134 |
| - response_format: ResponseFormat = field(default_factory=ResponseFormat) |
135 |
| - |
136 |
| - debug_config: Optional[DebugConfig] = field(default_factory=DebugConfig) |
137 |
| - |
138 |
| - def asjson(self) -> str: |
139 |
| - """Return the config in string of JSON format.""" |
140 |
| - return json.dumps(asdict(self)) |
141 |
| - |
142 |
| - @staticmethod |
143 |
| - def from_json(json_str: str) -> "GenerationConfig": |
144 |
| - """Construct a config from JSON string.""" |
145 |
| - return GenerationConfig(**json.loads(json_str)) |
| 5 | +from typing import List, Literal, Optional, Tuple, Union |
146 | 6 |
|
147 | 7 |
|
148 | 8 | @dataclass
|
|
0 commit comments