-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpromis_paris.py
285 lines (216 loc) · 8.5 KB
/
promis_paris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# PyTorch
import torch
import torch.optim as optim
#ASN
from asn.asn import ASN
from typing import Iterable, List
from ground_slash.program import Constraint, Naf, PredLiteral, SymbolicConstant
from asn.models.promis_mock_model import PromisMockNet
from asn.solver import SolvingContext
from ground_slash.grounding import Grounder
from ground_slash.program import Program
#Python libraries
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
import argparse
import json
from time import time
from tqdm import tqdm
#rtpt
from rtpt import RTPT
parser = argparse.ArgumentParser()
parser.add_argument("--steps", type=int, default=500, help="the number of pixels to solve in each step")
parser.add_argument("--size", type=int, default=6500, help="the image width/height")
parser.add_argument("--title", "--t", type=str, default="promis")
parser.add_argument("--log-path", "--lpath", type=str, default="./logs/")
parser.add_argument("--device", "--d", type=str, default="cuda")
parser.add_argument("--credentials", type=str, default="DO")
parser.add_argument("--data-path", type=str, default="/workspaces/ASN/data/promis_paris/")
args = parser.parse_args()
rtpt = RTPT(name_initials=args.credentials, experiment_name='ProMis PARIS in ASN', max_iterations=1)
rtpt.start()
# # Program
prog_str = '''
% Batch of probabilistic facts
point(x0,y0).
#npp(over(X,Y,park), [1,0]):- point(X,Y).
#npp(over(X,Y,primary), [1,0]):- point(X,Y).
#npp(over(X,Y,eiffel_tower_stadium), [1,0]):- point(X,Y).
#npp(over(X,Y,bercy_arena), [1,0]):- point(X,Y).
#npp(over(X,Y,secondary), [1,0]):- point(X,Y).
#npp(embassy(X,Y), [1,0]):- point(X,Y).
#npp(government(X,Y), [1,0]):- point(X,Y).
% Its okay to go over park areas
permission(X,Y) :- over(X,Y, park, 1).
% Its okay to fly over major roads
permission(X,Y) :- over(X, Y, primary,1).
permission(X,Y) :- over(X, Y, secondary,1).
% define sport sites
sport_sites(X,Y) :- over(X,Y, eiffel_tower_stadium,0).
sport_sites(X,Y) :- over(X,Y, bercy_arena,0).
% define public buildings
public_building(X,Y) :- embassy(X,Y,0).
public_building(X,Y) :- government(X,Y,0).
%it is not allowed to fly over sport sites and public buildings
permitted(X,Y) :- sport_sites(X,Y).
permitted(X,Y) :- public_building(X,Y).
%we are only permitted to fly over the permitted areas which are not restricted otherwise
airspace(X,Y) :- permission(X,Y), not permitted(X,Y).
'''
# % Query
# :- not landscape(x0), light_drone.
# :- not landscape(x0)
# :- not light_drone.
# ground program
grounder = Grounder(Program.from_string(prog_str))
grnd_prog = grounder.ground()
print("Grounded program:\n",grnd_prog,"\n")
#print("ASN program:\n",prog_str,"\n")
asn = ASN.from_string(prog_str)
#mock network which is not trainable but acts as probabilsitc fact
model = PromisMockNet()
model.to(args.device)
park_data = np.nan_to_num(np.load(args.data_path+"/park.npy"),0)
primary_data = np.load(args.data_path+"/primary.npy")
secondary_data = np.load(args.data_path+"/secondary.npy")
eifeltower_data = np.load(args.data_path+"/eifeltower.npy")
becyarena_data = np.load(args.data_path+"/bercyarena.npy")
government_data = np.load(args.data_path+"/government.npy")
embassy_data = np.load(args.data_path+"/embassy.npy")
print("Data loaded")
print("park_data shape:", park_data.shape,
"primary_data shape:", primary_data.shape,
"secondary_data shape:", secondary_data.shape,
"eifeltower_data shape:", eifeltower_data.shape,
"embassy_data shape:", embassy_data.shape,
"becyarena_data shape:", becyarena_data.shape)
def process_data(data, path):
"""
Load and return the data from the numpy file and store it in the visualization folder
"""
data = torch.tensor(data.flatten()).T
data = data.clamp_(0, 1)
print('data min:', data.min())
print('data max:', data.max())
if data.isnan().sum() > 0:
print("path", path)
return torch.stack((data, 1-data), dim=1).to(device='cuda')
park_data = process_data(park_data, "park")
primary_data = process_data(primary_data, "primary")
secondary_data = process_data(secondary_data, "secondary")
eifeltower_data = process_data(eifeltower_data, "eifeltower")
government_data = process_data(government_data, "government")
embassy_data = process_data(embassy_data, "embassy")
becyarena_data = process_data(becyarena_data, "bercyarena")
print("Data processed into tensors")
npp_rule_dict={}
total_steps = args.size**2 # 6500 = 262144
epochs = int(total_steps / args.steps) # 262144 / 512 = 512 or 262144 / 256 = 1024
assert total_steps % args.steps == 0, "total steps must be divisible by steps"
print("total steps:", total_steps)
print("epochs:", epochs)
print("steps:", args.steps)
print("device:",args.device)
asn.configure_NPPs(
{
npp_rule: {
"model": model,
"optimizer": optim.Adam(model.parameters(), lr=0.1)
if not i
else None,
}
for i, npp_rule in enumerate(asn.rg.npp_edges)
}
)
def get_npp_data_dict(i, size):
"""
Returns a chunk of pixels from map to be processed.
"""
npp_data_dict_str={}
npp_data_dict_str['#npp(over(x0,y0,park),[1,0]) :- point(x0,y0).']= [park_data[i*size:(i+1)*size,:]]
npp_data_dict_str['#npp(over(x0,y0,primary),[1,0]) :- point(x0,y0).']= [primary_data[i*size:(i+1)*size,:]]
npp_data_dict_str['#npp(over(x0,y0,secondary),[1,0]) :- point(x0,y0).']= [secondary_data[i*size:(i+1)*size,:]]
npp_data_dict_str['#npp(over(x0,y0,eiffel_tower_stadium),[1,0]) :- point(x0,y0).']= [eifeltower_data[i*size:(i+1)*size,:]]
npp_data_dict_str['#npp(government(x0,y0),[1,0]) :- point(x0,y0).']= [government_data[i*size:(i+1)*size,:]]
npp_data_dict_str['#npp(embassy(x0,y0),[1,0]) :- point(x0,y0).']= [embassy_data[i*size:(i+1)*size,:]]
npp_data_dict_str['#npp(over(x0,y0,bercy_arena),[1,0]) :- point(x0,y0).']= [becyarena_data[i*size:(i+1)*size,:]]
npp_data_dict={}
for e in asn.rg.npp_edges:
npp_data_dict[e] = npp_data_dict_str[str(e)]
return npp_data_dict
def to_queries(y: Iterable[int]) -> List[Constraint]:
return [
Constraint(
Naf(
PredLiteral(
"airspace",
*tuple((SymbolicConstant(f"x0"), SymbolicConstant(f"y0")))
),
)
)
for y_i in y
]
start = time()
#store the solved pixels for later stacking
solved_pixels = torch.zeros([total_steps])
solving_steps = 0
#epochs are not epochs as used in the DL sense but rather the chunks of pixels to solve
for i in tqdm(range(epochs)):
npp_data_dict = get_npp_data_dict(i, args.steps)
queries = to_queries(y=torch.ones(args.steps))
rg = asn.encode_queries(queries)
# NPP forward pass
npp_ctx_dict = asn.npp_forward(
npp_data={
npp_rule: (npp_data_dict[npp_rule][0],)
for i,npp_rule in enumerate(asn.rg.npp_edges)
},
)
# initialize solving context
solving_ctx = SolvingContext(
len(queries),
npp_ctx_dict,
)
for phase in range(1):
# prepare graph block
graph_block = asn.prepare_block(
queries=queries,
rg=rg, # pass pre-computed reasoning graph
phase=phase,
device=args.device
)
# solve graph block
graph_block = asn.solve(graph_block)
# update stable models
solving_ctx.update_SMs(graph_block)
Q = solving_ctx.p_Q
solved_pixels[solving_steps*args.steps:(solving_steps+1)*args.steps]= Q.squeeze()
solving_steps += 1
end = time()
total_time = end - start
log_path = Path(args.log_path)
log_path.mkdir(parents=True, exist_ok=True)
#create log file
exp_log = {"title": args.title,
"time": total_time,
"steps": args.steps,
"epochs": epochs,
"image_size": args.size,
"total_steps": total_steps}
with Path(log_path,f"{args.title}.json").open("w") as f:
json.dump(exp_log, f, indent=4)
#stack all pixels
#pixels_stacked = torch.stack(solved_pixels)
pixel_image = solved_pixels.view(args.size,args.size).cpu().numpy()
plt.imshow(pixel_image)
path_folder = Path(log_path,"npy")
path_folder.mkdir(parents=True, exist_ok=True)
path_img = Path(log_path,"img")
path_img.mkdir(parents=True, exist_ok=True)
#save generated map
path_img = Path(log_path,"img","landscape_{}.png".format(args.title))
path_npy =Path(log_path,"npy","landscape_{}.npy".format(args.title))
plt.savefig(path_img)
np.save(path_npy, pixel_image)
print("saved image to", path_img)