|
| 1 | +#include <mitsuba/core/bbox.h> |
| 2 | +#include <mitsuba/core/bsphere.h> |
| 3 | +#include <mitsuba/core/math.h> |
| 4 | +#include <mitsuba/core/properties.h> |
| 5 | +#include <mitsuba/core/transform.h> |
| 6 | +#include <mitsuba/core/warp.h> |
| 7 | +#include <mitsuba/render/scene.h> |
| 8 | +#include <mitsuba/render/sensor.h> |
| 9 | + |
| 10 | +NAMESPACE_BEGIN(mitsuba) |
| 11 | + |
| 12 | +/**! |
| 13 | +
|
| 14 | +.. _sensor-distant: |
| 15 | +
|
| 16 | +Distant directional sensor (:monosp:`distant`) |
| 17 | +---------------------------------------------- |
| 18 | +
|
| 19 | +.. pluginparameters:: |
| 20 | +
|
| 21 | + * - to_world |
| 22 | + - |transform| |
| 23 | + - Sensor-to-world transformation matrix. |
| 24 | + * - direction |
| 25 | + - |vector| |
| 26 | + - Alternative (and exclusive) to `to_world`. Direction from which the |
| 27 | + sensor will be recording in world coordinates. |
| 28 | + * - target |
| 29 | + - |point| |
| 30 | + - *Optional.* Point (in world coordinates) to which sampled rays will be |
| 31 | + cast. Useful for one-dimensional scenes. If unset, rays will be cast |
| 32 | + uniformly over the entire scene. |
| 33 | +
|
| 34 | +This sensor plugin implements a distant directional sensor which records |
| 35 | +radiation leaving the scene in a given direction. If the ``target`` parameter |
| 36 | +is not set, rays cast by the sensor will be distributed uniformly on the cross |
| 37 | +section of the scene's bounding sphere. |
| 38 | +
|
| 39 | +*/ |
| 40 | + |
| 41 | +MTS_VARIANT class DistantSensor final : public Sensor<Float, Spectrum> { |
| 42 | +public: |
| 43 | + MTS_IMPORT_BASE(Sensor, m_world_transform, m_needs_sample_3, m_film) |
| 44 | + MTS_IMPORT_TYPES(Scene) |
| 45 | + |
| 46 | + DistantSensor(const Properties &props) : Base(props) { |
| 47 | + /* Until `set_scene` is called, we have no information |
| 48 | + about the scene and default to the unit bounding sphere. */ |
| 49 | + m_bsphere = ScalarBoundingSphere3f(ScalarPoint3f(0.f), 1.f); |
| 50 | + |
| 51 | + if (props.has_property("direction")) { |
| 52 | + if (props.has_property("to_world")) |
| 53 | + Throw("Only one of the parameters 'direction' and 'to_world' " |
| 54 | + "can be specified at the same time!'"); |
| 55 | + |
| 56 | + ScalarVector3f direction(normalize(props.vector3f("direction"))); |
| 57 | + auto [up, unused] = coordinate_system(direction); |
| 58 | + |
| 59 | + m_world_transform = |
| 60 | + new AnimatedTransform(ScalarTransform4f::look_at( |
| 61 | + ScalarPoint3f(0.0f), ScalarPoint3f(direction), up)); |
| 62 | + } |
| 63 | + |
| 64 | + if (props.has_property("target")) { |
| 65 | + m_target = props.point3f("target"); |
| 66 | + m_has_target = true; |
| 67 | + Log(Debug, "Targeting point %s", m_target); |
| 68 | + } else { |
| 69 | + m_has_target = false; |
| 70 | + } |
| 71 | + |
| 72 | + if (m_film->size() != ScalarPoint2i(1, 1)) |
| 73 | + Throw("This sensor only supports films of size 1x1 Pixels!"); |
| 74 | + |
| 75 | + if (m_film->reconstruction_filter()->radius() > |
| 76 | + 0.5f + math::RayEpsilon<Float>) |
| 77 | + Log(Warn, "This sensor should be used with a reconstruction filter " |
| 78 | + "with a radius of 0.5 or lower (e.g. default box)"); |
| 79 | + |
| 80 | + m_needs_sample_3 = false; |
| 81 | + } |
| 82 | + |
| 83 | + void set_scene(const Scene *scene) override { |
| 84 | + m_bsphere = scene->bbox().bounding_sphere(); |
| 85 | + m_bsphere.radius = |
| 86 | + max(math::RayEpsilon<Float>, |
| 87 | + m_bsphere.radius * (1.f + math::RayEpsilon<Float>) ); |
| 88 | + } |
| 89 | + |
| 90 | + std::pair<Ray3f, Spectrum> sample_ray(Float time, Float wavelength_sample, |
| 91 | + const Point2f &spatial_sample, |
| 92 | + const Point2f & /*direction_sample*/, |
| 93 | + Mask active) const override { |
| 94 | + MTS_MASKED_FUNCTION(ProfilerPhase::EndpointSampleRay, active); |
| 95 | + Ray3f ray; |
| 96 | + ray.time = time; |
| 97 | + |
| 98 | + // 1. Sample spectrum |
| 99 | + auto [wavelengths, wav_weight] = |
| 100 | + sample_wavelength<Float, Spectrum>(wavelength_sample); |
| 101 | + ray.wavelengths = wavelengths; |
| 102 | + |
| 103 | + // 2. Set ray direction |
| 104 | + auto trafo = m_world_transform->eval(time, active); |
| 105 | + ray.d = trafo.transform_affine(Vector3f{ 0.f, 0.f, 1.f }); |
| 106 | + |
| 107 | + // 3. Sample ray origin |
| 108 | + if (!m_has_target) { |
| 109 | + // If no target point is defined, sample a target point on the |
| 110 | + // bounding sphere's cross section |
| 111 | + Point2f offset = |
| 112 | + warp::square_to_uniform_disk_concentric(spatial_sample); |
| 113 | + Vector3f perp_offset = |
| 114 | + trafo.transform_affine(Vector3f{ offset.x(), offset.y(), 0.f }); |
| 115 | + ray.o = m_bsphere.center + (perp_offset - ray.d) * m_bsphere.radius; |
| 116 | + } else { |
| 117 | + ray.o = m_target - 2.f * ray.d * m_bsphere.radius; |
| 118 | + } |
| 119 | + |
| 120 | + ray.update(); |
| 121 | + return std::make_pair( |
| 122 | + ray, m_has_target |
| 123 | + ? wav_weight |
| 124 | + : wav_weight * (math::Pi<Float> * sqr(m_bsphere.radius))); |
| 125 | + } |
| 126 | + |
| 127 | + std::pair<RayDifferential3f, Spectrum> sample_ray_differential( |
| 128 | + Float time, Float wavelength_sample, const Point2f &spatial_sample, |
| 129 | + const Point2f & /*direction_sample*/, Mask active) const override { |
| 130 | + MTS_MASKED_FUNCTION(ProfilerPhase::EndpointSampleRay, active); |
| 131 | + RayDifferential3f ray; |
| 132 | + ray.time = time; |
| 133 | + |
| 134 | + // 1. Sample spectrum |
| 135 | + auto [wavelengths, wav_weight] = |
| 136 | + sample_wavelength<Float, Spectrum>(wavelength_sample); |
| 137 | + ray.wavelengths = wavelengths; |
| 138 | + |
| 139 | + // 2. Set ray direction |
| 140 | + auto trafo = m_world_transform->eval(time, active); |
| 141 | + ray.d = trafo.transform_affine(Vector3f{ 0.f, 0.f, 1.f }); |
| 142 | + |
| 143 | + // 3. Sample ray origin |
| 144 | + if (!m_has_target) { |
| 145 | + // If no target point is defined, sample a target point on the |
| 146 | + // bounding sphere's cross section |
| 147 | + Point2f offset = |
| 148 | + warp::square_to_uniform_disk_concentric(spatial_sample); |
| 149 | + Vector3f perp_offset = |
| 150 | + trafo.transform_affine(Vector3f{ offset.x(), offset.y(), 0.f }); |
| 151 | + ray.o = m_bsphere.center + (perp_offset - ray.d) * m_bsphere.radius; |
| 152 | + } else { |
| 153 | + ray.o = m_target - 2.f * ray.d * m_bsphere.radius; |
| 154 | + } |
| 155 | + |
| 156 | + // 4. Set differentials; since the film size is always 1x1, we don't |
| 157 | + // have differentials |
| 158 | + ray.has_differentials = false; |
| 159 | + |
| 160 | + ray.update(); |
| 161 | + return std::make_pair( |
| 162 | + ray, m_has_target |
| 163 | + ? wav_weight |
| 164 | + : wav_weight * (math::Pi<Float> * sqr(m_bsphere.radius))); |
| 165 | + } |
| 166 | + |
| 167 | + /// This sensor does not occupy any particular region of space, return an |
| 168 | + /// invalid bounding box |
| 169 | + ScalarBoundingBox3f bbox() const override { return ScalarBoundingBox3f(); } |
| 170 | + |
| 171 | + std::string to_string() const override { |
| 172 | + std::ostringstream oss; |
| 173 | + oss << "DistantSensor[" << std::endl |
| 174 | + << " world_transform = " << m_world_transform << "," << std::endl |
| 175 | + << " bsphere = " << m_bsphere << "," << std::endl |
| 176 | + << " film = " << m_film << "," << std::endl |
| 177 | + << "]"; |
| 178 | + return oss.str(); |
| 179 | + } |
| 180 | + |
| 181 | + MTS_DECLARE_CLASS() |
| 182 | + |
| 183 | +protected: |
| 184 | + ScalarBoundingSphere3f m_bsphere; |
| 185 | + ScalarPoint3f m_target; |
| 186 | + bool m_has_target; |
| 187 | +}; |
| 188 | + |
| 189 | +MTS_IMPLEMENT_CLASS_VARIANT(DistantSensor, Sensor) |
| 190 | +MTS_EXPORT_PLUGIN(DistantSensor, "DistantSensor"); |
| 191 | +NAMESPACE_END(mitsuba) |
0 commit comments