-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathcall_ext.cpp
294 lines (245 loc) · 10.2 KB
/
call_ext.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#define NB_INTRUSIVE_EXPORT NB_IMPORT
#include <nanobind/nanobind.h>
#include <nanobind/intrusive/counter.h>
#include <nanobind/stl/pair.h>
#include <drjit/call.h>
#include <drjit/python.h>
#include <drjit/random.h>
namespace nb = nanobind;
namespace dr = drjit;
using namespace nb::literals;
template <typename T>
struct Sampler {
Sampler(size_t size) : rng(size) { }
T next() { return rng.next_float32(); }
void traverse_1_cb_ro(void *payload, void (*fn)(void *, uint64_t)) const {
traverse_1_fn_ro(rng, payload, fn);
}
void traverse_1_cb_rw(void *payload, uint64_t (*fn)(void *, uint64_t)) {
traverse_1_fn_rw(rng, payload, fn);
}
dr::PCG32<dr::uint64_array_t<T>> rng;
};
template <typename Float> struct Base : nb::intrusive_base {
using Mask = dr::mask_t<Float>;
using UInt32 = dr::uint32_array_t<Float>;
virtual std::pair<Float, Float> f(Float x, Float y) = 0;
virtual std::pair<Float, Float> f_masked(const std::pair<Float, Float> &xy, Mask active) = 0;
virtual Float g(Float, Mask) = 0;
virtual Float nested(Float x, UInt32 s) = 0;
virtual void dummy() = 0;
virtual float scalar_getter() = 0;
virtual Float opaque_getter() = 0;
virtual Float constant_getter() = 0;
virtual std::pair<Float, dr::uint32_array_t<Float>> complex_getter() = 0;
virtual dr::replace_value_t<Float, Base<Float>*> get_self() const = 0;
virtual std::pair<Sampler<Float> *, Float> sample(Sampler<Float> *) = 0;
virtual dr::Array<Float, 4> gather_packet(UInt32 i) const = 0;
virtual void scatter_packet(UInt32, dr::Array<Float, 4>) = 0;
virtual void scatter_add_packet(UInt32, dr::Array<Float, 4>) = 0;
Base() {
if constexpr (dr::is_jit_v<Float>)
jit_registry_put("", "Base", this);
}
virtual ~Base() { jit_registry_remove(this); }
};
template <typename Float> struct A : Base<Float> {
using Mask = dr::mask_t<Float>;
using UInt32 = dr::uint32_array_t<Float>;
virtual std::pair<Float, Float> f(Float x, Float y) override {
return { 2 * y, -x };
}
virtual std::pair<Float, Float> f_masked(const std::pair<Float, Float> &xy, Mask active) override {
if (active.state() != VarState::Literal || active[0] != true)
throw std::runtime_error("f_masked(): expected the mask to be a literal");
return f(xy.first, xy.second);
}
virtual Float g(Float, Mask) override {
return value;
}
virtual Float nested(Float x, UInt32 /*s*/) override {
return x + dr::gather<Float>(value, UInt32(0));
}
virtual std::pair<Sampler<Float> *, Float> sample(Sampler<Float> *s) override {
return { s, s->next() };
}
virtual void dummy() override { }
virtual float scalar_getter() override { return 1.f; }
virtual Float opaque_getter() override { return opaque; }
virtual Float constant_getter() override { return 123; }
virtual std::pair<Float, dr::uint32_array_t<Float>>
complex_getter() override {
return { opaque, 5 };
}
dr::replace_value_t<Float, Base<Float>*> get_self() const override { return this; }
dr::Array<Float, 4> gather_packet(UInt32 i) const override {
return dr::gather<dr::Array<Float, 4>>(value, i);
}
void scatter_packet(UInt32 i, dr::Array<Float, 4> arg) override {
dr::scatter(value, arg, i);
}
void scatter_add_packet(UInt32 i, dr::Array<Float, 4> arg) override {
dr::scatter_add(value, arg, i);
}
/// Additional interface that will be exposed for calls to `A`
uint32_t a_get_property() const { return scalar_property; }
Float a_gather_extra_value(UInt32 idx, Mask active) const {
return dr::gather<Float>(extra_value, idx, active);
}
uint32_t scalar_property;
Float value, extra_value;
Float opaque = dr::opaque<Float>(1.f);
};
template <typename Float> struct B : Base<Float> {
using Mask = dr::mask_t<Float>;
using UInt32 = dr::uint32_array_t<Float>;
virtual std::pair<Float, Float> f(Float x, Float y) override {
return { 3 * y, x };
}
virtual std::pair<Float, Float> f_masked(const std::pair<Float, Float> &xy, Mask active) override {
if (active.state() != VarState::Literal || active[0] != true)
throw std::runtime_error("f_masked(): expected the mask to be a literal!");
return f(xy.first, xy.second);
}
virtual Float g(Float x, Mask) override {
return value*x;
}
virtual Float nested(Float x, UInt32 s) override {
using BaseArray = dr::replace_value_t<Float, Base<Float>*>;
BaseArray self = dr::reinterpret_array<BaseArray>(s);
return self->nested(x, s);
}
virtual std::pair<Sampler<Float> *, Float> sample(Sampler<Float> *s) override {
return { s, 0 };
}
virtual void dummy() override { }
virtual float scalar_getter() override { return 2.f; }
virtual Float opaque_getter() override { return opaque; }
virtual Float constant_getter() override { return 123; }
virtual std::pair<Float, dr::uint32_array_t<Float>>
complex_getter() override {
return { 2 * opaque, 3 };
}
dr::replace_value_t<Float, Base<Float>*> get_self() const override { return this; }
dr::Array<Float, 4> gather_packet(UInt32) const override {
return 0;
}
void scatter_packet(UInt32, dr::Array<Float, 4>) override { }
void scatter_add_packet(UInt32, dr::Array<Float, 4>) override { }
Float value;
Float opaque = dr::opaque<Float>(2.f);
};
DRJIT_CALL_TEMPLATE_BEGIN(Base)
DRJIT_CALL_METHOD(f)
DRJIT_CALL_METHOD(f_masked)
DRJIT_CALL_METHOD(dummy)
DRJIT_CALL_METHOD(g)
DRJIT_CALL_METHOD(nested)
DRJIT_CALL_METHOD(sample)
DRJIT_CALL_METHOD(gather_packet)
DRJIT_CALL_METHOD(scatter_packet)
DRJIT_CALL_METHOD(scatter_add_packet)
DRJIT_CALL_GETTER(scalar_getter)
DRJIT_CALL_GETTER(opaque_getter)
DRJIT_CALL_GETTER(complex_getter)
DRJIT_CALL_GETTER(constant_getter)
DRJIT_CALL_METHOD(get_self)
DRJIT_CALL_END(Base)
DRJIT_CALL_TEMPLATE_INHERITED_BEGIN(A, Base)
DRJIT_CALL_METHOD(a_gather_extra_value)
DRJIT_CALL_GETTER(a_get_property)
DRJIT_CALL_INHERITED_END(Base)
template <JitBackend Backend>
void bind(nb::module_ &m) {
using Float = dr::DiffArray<Backend, float>;
using UInt32 = dr::uint32_array_t<Float>;
using BaseT = Base<Float>;
using AT = A<Float>;
using BT = B<Float>;
using Mask = dr::mask_t<Float>;
using UInt32 = dr::uint32_array_t<Float>;
using Sampler = ::Sampler<Float>;
auto sampler = nb::class_<Sampler>(m, "Sampler")
.def(nb::init<size_t>())
.def("next", &Sampler::next)
.def_rw("rng", &Sampler::rng);
bind_traverse(sampler);
nb::class_<BaseT, nb::intrusive_base>(m, "Base")
.def("f", &BaseT::f)
.def("f_masked", &BaseT::f_masked)
.def("g", &BaseT::g)
.def("nested", &BaseT::nested)
.def("sample", &BaseT::sample);
nb::class_<AT, BaseT>(m, "A")
.def(nb::init<>())
.def("a_get_property", &AT::a_get_property)
.def("a_gather_extra_value", &AT::a_gather_extra_value)
.def_rw("opaque", &AT::opaque)
.def_rw("value", &AT::value)
.def_rw("extra_value", &AT::extra_value)
.def_rw("scalar_property", &AT::scalar_property);
nb::class_<BT, BaseT>(m, "B")
.def(nb::init<>())
.def_rw("opaque", &BT::opaque)
.def_rw("value", &BT::value);
using BaseArray = dr::DiffArray<Backend, BaseT *>;
m.def("dispatch_f", [](BaseArray &self, Float a, Float b) {
return dr::dispatch(
self, [](BaseT *inst, Float a_, Float b_) { return inst->f(a_, b_); }, a, b);
});
dr::ArrayBinding b;
auto base_ptr = dr::bind_array_t<BaseArray>(b, m, "BasePtr")
.def("f",
[](BaseArray &self, Float a, Float b) { return self->f(a, b); })
.def("f_masked",
[](BaseArray &self, std::pair<Float, Float> ab, Mask active) {
return self->f_masked(ab, active);
},
"ab"_a, "mask"_a = true)
.def("g",
[](BaseArray &self, Float x, Mask m) { return self->g(x, m); },
"x"_a, "mask"_a = true)
.def("nested",
[](BaseArray &self, Float x, UInt32 s) { return self->nested(x, s); },
"x"_a, "s"_a)
.def("dummy", [](BaseArray &self) { return self->dummy(); })
.def("scalar_getter", [](BaseArray &self, Mask m) {
return self->scalar_getter(m);
}, "mask"_a = true)
.def("opaque_getter", [](BaseArray &self, Mask m) {
return self->opaque_getter(m);
}, "mask"_a = true)
.def("complex_getter", [](BaseArray &self, Mask m) {
return self->complex_getter(m);
}, "mask"_a = true)
.def("constant_getter", [](BaseArray &self, Mask m) {
return self->constant_getter(m);
}, "mask"_a = true)
.def("sample", [](BaseArray &self, Sampler *sampler) {
return self->sample(sampler);
}, "sampler"_a)
.def("get_self", [](BaseArray &self) { return self->get_self(); })
.def("gather_packet", [](BaseArray &self, UInt32 i) { return self->gather_packet(i); })
.def("scatter_packet", [](BaseArray &self, UInt32 i, dr::Array<Float, 4> arg) { self->scatter_packet(i, arg); })
.def("scatter_add_packet", [](BaseArray &self, UInt32 i, dr::Array<Float, 4> arg) { self->scatter_add_packet(i, arg); });
dr::ArrayBinding a_ptr_b;
using APtr = dr::DiffArray<Backend, AT *>;
auto a_ptr = dr::bind_array_t<APtr>(a_ptr_b, m, "APtr")
.def("a_get_property", [](APtr &self, Mask m) {
return self->a_get_property(m);
}, "mask"_a = true)
.def("a_gather_extra_value", [](APtr &self, const UInt32 &idx, const Mask &m) {
return self->a_gather_extra_value(idx, m);
}, "idx"_a, "mask"_a);
}
NB_MODULE(call_ext, m) {
nb::module_::import_("drjit");
#if defined(DRJIT_ENABLE_LLVM)
nb::module_ llvm = m.def_submodule("llvm");
bind<JitBackend::LLVM>(llvm);
#endif
#if defined(DRJIT_ENABLE_CUDA)
nb::module_ cuda = m.def_submodule("cuda");
bind<JitBackend::CUDA>(cuda);
#endif
}