-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
102 lines (83 loc) · 3.25 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from flask import Flask, render_template, request, redirect, session
from flask import jsonify
from dfscanner import load_trained_model, predict_deepfake
import sqlite3
import os
import datetime
app = Flask(__name__)
app.secret_key = 'your_secret_key'
UPLOAD_FOLDER = 'uploads'
LOG_FILE_PATH = 'logs/scan_log.txt'
model = load_trained_model()
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
@app.route('/')
def index():
if 'username' in session:
return render_template('index.html', username=session['username'])
return redirect('/login')
@app.route('/login', methods=['GET', 'POST'])
def login():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
conn = sqlite3.connect('db/database.db')
c = conn.cursor()
c.execute("SELECT * FROM users WHERE username = ? AND password = ?", (username, password))
user = c.fetchone()
conn.close()
if user:
session['username'] = username
return redirect('/')
else:
return render_template('error.html', error='Invalid username or password')
return render_template('login.html')
@app.route('/signup', methods=['GET', 'POST'])
def signup():
if request.method == 'POST':
username = request.form['username']
password = request.form['password']
conn = sqlite3.connect('db/database.db')
c = conn.cursor()
c.execute("INSERT INTO users (username, password) VALUES (?, ?)", (username, password))
conn.commit()
conn.close()
return redirect('/login')
return render_template('signup.html')
@app.route('/logout', methods=['POST'])
def logout():
session.pop('username', None)
return redirect('/login')
# Route for deep fake detection tool
@app.route('/dfscanner', methods=['GET', 'POST'])
def deepfake_detection():
if request.method == 'POST':
if 'image' not in request.files:
return jsonify({"error": "No image file provided"}), 400
image_file = request.files['image']
image_path = os.path.join(UPLOAD_FOLDER, image_file.filename)
image_file.save(image_path)
prediction_result = predict_deepfake(model, image_path)
# Log the result
with open(LOG_FILE_PATH, 'a') as log_file:
log_file.write(f"{datetime.datetime.now()} - Image: {image_path} - Prediction: {prediction_result}\n")
return render_template('dfscanner.html', prediction=prediction_result)
return render_template('dfscanner.html')
@app.route('/face_recognition')
def face_recognition():
# Implement face recognition functionality
return "Face Recognition Tool - Comming Soon........"
# Route for reading scan history
@app.route('/history', methods=['POST'])
def history():
history = get_scan_history()
return render_template('history.html', history=history)
# Function to get scan history
def get_scan_history():
if os.path.exists(LOG_FILE_PATH):
with open(LOG_FILE_PATH, 'r') as file:
history = file.read()
return history
else:
return "No scan history available"
if __name__ == '__main__':
app.run(debug=True)