-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAVL.cpp
203 lines (177 loc) · 5.98 KB
/
AVL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//
// Created by Mina on 01-Dec-22.
//
#include "AVL.h"
#include <iostream>
#include <queue>
using namespace std;
AVL::AVL() : root(nullptr) {};
void AVL::insert(ElementType value) {
if (empty())
root = new AVLNode(value);
else
root = insertAux(value, root); //insert node in the tree and point the root to the new return subtree
}
void AVL::remove(ElementType val) {
if (empty()) {
cerr << "Cannot delete, the tree is empty.";
return;
} else {
removeAux(val, root);
}
}
bool AVL::search(ElementType val) {
return searchAux(val, root);
}
bool AVL::empty() {
return (root == nullptr);
}
void AVL::clear() {
clearAux(root);
root = nullptr;
}
void AVL::clearAux(AVL::AVLNode *&root) {
if (root == nullptr)
return;
if (root->left)
clearAux(root->left);
if (root->right)
clearAux(root->right);
delete root;
root = nullptr;
}
void AVL::inorderTraversal(vector<ElementType> &v) {
inorderAux(v, root);
}
void AVL::levelOrderPrint() {
if (empty()) {
cout << "empty tree";
return;
}
queue<AVLNode *> q;
AVLNode *cur = root;
q.push(root);
while (!q.empty()) {
int size = (int) q.size();
while (size--) {
cur = q.front();
q.pop();
cout << cur->data << ' ';
if (cur->left != nullptr)
q.push(cur->left);
if (cur->right != nullptr)
q.push(cur->right);
}
cout << '\n';
}
cout << '\n';
}
AVL::~AVL() {
clear();
}
AVL::AVLNode *AVL::rotateRight(AVL::AVLNode *node) {
assert(node != nullptr);
assert(node->left != nullptr);
AVLNode *p = node->left;
node->left = p->right;
p->right = node;
node->updateHeight();
p->updateHeight();
return p;
}
AVL::AVLNode *AVL::rotateLeft(AVL::AVLNode *node) {
assert(node != nullptr);
assert(node->right != nullptr);
AVLNode *p = node->right;
node->right = p->left;
p->left = node;
node->updateHeight();
p->updateHeight();
return p;
}
AVL::AVLNode *AVL::balance(AVL::AVLNode *node) {
if (node->balanceFactor() == 2) { //this is either a left left or left right imbalance
if (node->left->balanceFactor() == -1) //this is a left right imbalance
node->left = rotateLeft(node->left); // this will turn it to a left left imbalance
node = rotateRight(node); //this will fix the left left imbalance
} else if (node->balanceFactor() == -2) { //this is either a right right or right left imbalance
if (node->right->balanceFactor() == 1) //this is a right left imbalance
node->right = rotateRight(node->right); //this will turn it to a right right imbalance
node = rotateLeft(node); // this will fix the right right imbalance
}
return node;
}
AVL::AVLNode *AVL::insertAux(ElementType val, AVL::AVLNode *&node) {
if (val > node->data) {
if (node->right != nullptr)
node->right = insertAux(val, node->right); //insert the node in the right subtree and return the new root
else
node->right = new AVLNode(val); //just create a new node on the right
} else if (val < node->data) {
if (node->left != nullptr)
node->left = insertAux(val, node->left); //insert the node in the left subtree and return the new root
else
node->left = new AVLNode(val); //just create a new node on the left
}
node->updateHeight(); //update the height of the node after the insertion
return balance(node); //balance the tree from bottom to up and return the balanced node
}
AVL::AVLNode *AVL::removeAux(ElementType val, AVL::AVLNode *&node) {
if (node == nullptr) {
cerr << "Cannot delete, " << val << " was not found.";
return nullptr;
}
if (val < node->data)
node->left = removeAux(val, node->left); //delete the node from the left subtree and return the new node
else if (val > node->data)
node->right = removeAux(val, node->right); //delete the node from the right subtree and return the new node
else {
AVLNode *temp = node; //this temp will hold the node to be deleted while the node pointer
// will hold the return value
if (node->left == nullptr && node->right == nullptr) //case 1: no children
node = nullptr;
else if (node->left == nullptr) //case 2: 1 child (left)
node = node->right;
else if (node->right == nullptr) //case 2: 1 child (right)
node = node->left;
else { //case 3: 2 children
AVLNode *successor = minNode(node->right); //get the successor
node->data = successor->data; //get the value in the successor
node->right = removeAux(node->data, node->right); //delete the successor in the right subtree
temp = nullptr; //if we do not change the value of the temp, it will be deleted at the end of the function,
//and we already deleted the successor
}
if (temp != nullptr)
delete temp; // delete the node
}
if (node != nullptr) {
node->updateHeight(); //update the height of the node after the deletion
node = balance(node); //balance the tree from bottom to up
}
return node;
}
AVL::AVLNode *AVL::minNode(AVL::AVLNode *node) {
AVLNode *cur = node;
while (cur != nullptr && cur->left != nullptr)
cur = cur->left;
return cur;
}
void AVL::inorderAux(vector<ElementType> &v, AVLNode *node) {
if (node != nullptr) {
if (node->left != nullptr)
inorderAux(v, node->left);
v.push_back(node->data);
if (node->right != nullptr)
inorderAux(v, node->right);
}
}
bool AVL::searchAux(ElementType val, AVL::AVLNode *node) {
if (node == nullptr)
return false;
if (val > node->data)
return searchAux(val, node->right);
else if (val < node->data)
return searchAux(val, node->left);
else
return true;
}