-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork.py
401 lines (371 loc) · 20.5 KB
/
NeuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#!/usr/bin/env python3
"""
Neural Network example for CS445/545 at Portland State University.
This implements a Neural Network (aka, Multi-Level Perceptron) classifier for
the second homework for Machine Learning at Portland State University. I've
tested this on the mnist digit recognition data set, however, it should be able
to handle any discrete (or discretized) data sets. Also, this can (in
principle) handle any number of hidden layers of any size. In practice, this is
limited by time constraints and physical resources, of course.
"""
__author__ = "Mike Lane"
__copyright__ = "Copyright 2017, Michael Lane"
__license__ = "MIT"
__email__ = "[email protected]"
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import expit
class NeuralNetwork:
"""
The Neural Network class. Minimum initialization requires a number of inputs, number of outputs, as well
as a list of hidden layer sizes in order of lowest hidden layer to highest hidden layer. The default
hyperperameters are:
- Learning Rate = 0.1
- Momentum = 0.9
- Random weights seed = [-0.05, 0.05)
If you've trained a network previously and have the weights as a list of numpy arrays, you can pass
that in to this network to use it for prediction.
The Network has statistics built-in including a list of accuracies of the training and test set over
the training epochs as well as confusion matrices for the epoch with the highest accuracy over the test
set. Additionally, the weights of the training epoch with the highest test accuracy is stored for later
use.
"""
def __init__(self, number_of_inputs: int, number_of_classes: int, hidden_layers_sizes: int,
X_train=None, y_train=None, X_test=None, y_test=None,
learning_rate=0.1, momentum=0.9, weights=None, rand_low=-0.05, rand_high=0.05):
"""
NeuralNetwork constructor.
:param number_of_inputs: integer. Required since a network is targeted to a specific input and output
:param number_of_classes: integer. Also required for the same reason.
:param hidden_layers_sizes: integer. Ditto
:param X_train: The input values of the training set. This must be a numpy array of shape (number
of training inputs, number of attributes). This must include a bias value as the
0th index. TODO: change this.
:param y_train: The target values of the training set. This must be a numpy array of shape (number
of training inputs, 1). The value of y_train[i] must be the corresponding target
class for X_train[i].
:param X_test: Similar to X_train but for the test set.
:param y_test: Similar to y_train but for the test set.
:param learning_rate: float, default 0.1.
:param momentum: float, default 0.9
:param weights: List of numpy ndarrays. Default None. If you've already trained this network,
you can initialize it with the trained weights
:param rand_low: The minimum value of a random weight.
:param rand_high: The maximum value of a random weight.
"""
# Set the hyperparameters
self.learning_rate = learning_rate
self.momentum = momentum
self.number_of_classes = number_of_classes
self.number_of_inputs = number_of_inputs
self.rand_low = rand_low
self.rand_high = rand_high
if weights: # In case we want to load a pre-trained network
self.weights = weights
else:
# Set the structure of the network. Doing this allows me to make the
# network have any arbitrary number of layers of any size.
self.hidden_layers_sizes = hidden_layers_sizes
self.all_layers_sizes = [number_of_inputs] + hidden_layers_sizes + [number_of_classes]
self.weight_shapes = [(v + 1, self.all_layers_sizes[i + 1]) for i, v in
enumerate(self.all_layers_sizes[:-1])]
self.weights = [np.random.uniform(rand_low, rand_high, shape) for shape in self.weight_shapes]
self.max_accuracy_weights = None
self.prev_Delta_w = [np.zeros(shape) for shape in self.weight_shapes]
self.X_train = X_train
self.y_train = y_train
self.X_test = X_test
self.y_test = y_test
# The target vectors for a given class don't change, so set them once and forget them.
self.targets = np.zeros((number_of_classes, number_of_classes))
np.fill_diagonal(self.targets, 0.8)
self.targets += 0.1
# Initialize the data structures to facilitate analysis.
self.train_accuracy = []
self.test_accuracy = []
self.max_testing_accuracy = 0
self.max_training_accuracy = 0
self.train_confusion_matrix = np.zeros((number_of_classes, number_of_classes), dtype=np.int)
self.test_confusion_matrix = np.zeros((number_of_classes, number_of_classes), dtype=np.int)
def feed_forward(self, x):
"""
Forward propagate an instance through the network and return a list of the activations of the hidden
and output layers. Note: in python 3, the @ is matrix multiply (__matmul__). Wherever you see this
in the code, it will be the equivalent of using a numpy dot() function.
:param x: numpy ndarray of the instance attributes with a bias as the 0th index. The shape must be
(1, number of attributes)
:return: List of numpy arrays of shape (1, number of layer values).
"""
results = []
if len(self.weights) == 1: # No hidden layers, so no bias required
results.append(expit(x @ self.weights[0])) # TODO make sure having no hidden layers works or take this out
else: # at least 1 hidden layer
# Calculate the first hidden layer activations and include the bias.
results.append(np.insert(expit(x @ self.weights[0]), 0, 1.0, axis=1))
for w in self.weights[1:-1]:
# Calculate the rest of the hidden layer activations and include biases
results.append(np.insert(expit(results[-1] @ w), 0, 1.0, axis=1))
# Calculate the output layer activations (no bias required).
results.append(expit(results[-1] @ self.weights[-1]))
return results
def error_terms(self, activations, target_vector):
"""
Calculates the error terms over all hidden layers and the output layer.
:param activations: A list of activations as numpy ndarrays. Each activation must have the shape
(1, size of layer). The activations should be in order of lowest hidden layer
to output layer.
:param target_vector: An ndarray of the shape (1, number of attributes).
:return: List of Numpy ndarrays of error terms each with shape (layer j, layer k) where j is the
layer directly below k.
"""
# Output error term: $\del_k = o_k * (1 - o_k) (t_k - o_k), \forall k \in o$
results = [activations[-1] * (1 - activations[-1]) * (target_vector - activations[-1])]
# Zip together the hidden activations with the weights above them and reverse it
for i, (a, w) in enumerate(list(zip(activations[:-1], self.weights[1:]))[::-1]):
# Hidden error term: $\del_j = h_j (1 - h_j) (\Sigma_{k \in o} w_{kj} \del_k)$
results.append(a[:, 1:] * (1 - a[:, 1:]) * (results[-1] @ w.T[:, 1:]))
return results[::-1] # Return the list in reverse to match up with everything else
def Delta_w(self, del_ws, activations, x):
"""
Calculate the total value to add to each of the corresponding weights of the corresponding layer.
:param del_ws: List of ndarrays of error terms. Each should have the same shape as the
corresponding weight layer.
:param activations: List of ndarrays. The activations of each of the hidden layers and the output
layer in order. The shape of each must be (1, number of activations of the
corresponding layer)
:param x: Numpy ndarray of input values in the shape of (1, number of attributes)
:return: List of numpy ndarrays with the same shape as the network's weight values.
"""
del_ws = [self.learning_rate * d for d in del_ws]
# Delta_w for first weight matrix
result = [(x.T @ del_ws[0]) + (self.momentum * self.prev_Delta_w[0])]
# Delta_w for all subsequent weight matrices
for i, (a, d, m) in enumerate(list(zip([a.T for a in activations[:-1]],
del_ws[1:],
self.prev_Delta_w[1:]))):
result.append((a @ d) + (self.momentum * m))
return result
def train_network(self):
"""
Go through the process of forwarding an input to the output layer, calculating the error signal,
and updating the weights accordingly.
:return: None
"""
for x, y in zip(self.X_train, self.y_train):
x = np.atleast_2d(x)
activations = self.feed_forward(x)
Dw = self.prev_Delta_w = self.Delta_w(self.error_terms(activations, self.targets[y]),
activations, x)
for i, _ in enumerate(self.weights):
self.weights[i] += Dw[i]
def predict(self, x):
"""
Similar process of feed_forward, but disregard intermediate hidden layer values. For a network with
a single hidden layer, this could, conceivably be a one-line function. But with an unknown number of
layers (and to avoid the stack growing too much with recursion), I separated it out this way.
:param x: Numpy ndarray. The instance attribute values in shape (1, number of attributes)
:return: int. The class that this network guesses for the given input value.
"""
result = None
if len(self.weights) == 1: # No hidden layers, so no bias required
result = expit(x @ self.weights[0])
else: # at least 1 hidden layer
# Calculate the first hidden layer activations and include the bias.
result = np.insert(expit(x @ self.weights[0]), 0, 1.0, axis=1)
for w in self.weights[1:-1]:
# Calculate the rest of the hidden layer activations and include biases
result = np.insert(expit(result @ w), 0, 1.0, axis=1)
# Calculate the output layer activations (no bias required).
result = expit(result @ self.weights[-1])
return np.argmax(result)
def calculate_accuracy(self):
"""
For each input predict the output and tally the number of correct guesses. Also, update the confusion
matrix at each step.
:return: None.
"""
cm_train = np.zeros_like(self.train_confusion_matrix, dtype=np.int)
cm_test = np.zeros_like(self.test_confusion_matrix, dtype=np.int)
num_correct = 0
for i, x in enumerate(self.X_train):
actual = y_train[i]
predicted = self.predict(np.atleast_2d(x))
if actual == predicted:
num_correct += 1
cm_train[actual][predicted] += 1
self.train_accuracy.append(num_correct / len(self.X_train))
if self.train_accuracy[-1] > self.max_training_accuracy:
self.max_training_accuracy = self.train_accuracy[-1]
self.train_confusion_matrix = cm_train
num_correct = 0
for i, x in enumerate(self.X_test):
actual = y_test[i]
predicted = self.predict(np.atleast_2d(x))
if actual == predicted:
num_correct += 1
cm_test[actual][predicted] += 1
self.test_accuracy.append(num_correct / len(self.X_test))
if self.test_accuracy[-1] > self.max_testing_accuracy:
self.max_accuracy_weights = self.weights.copy()
self.max_testing_accuracy = self.test_accuracy[-1]
self.test_confusion_matrix = cm_test
def fit(self, number_of_epochs=50, X_train=None, y_train=None, X_test=None, y_test=None, verbose=False,
momentum=None):
"""
Train the network weights for a given set of inputs.
:param number_of_epochs: int, default 50.
:param X_train: The training set to use. Required if network wasn't constructed with it.
:param y_train: The testing set to use. Required if network wasn't constructed with it.
:param X_test: Same
:param y_test: Same
:param verbose: bool, default False. To get fancy pants visual feedback on the training progress.
:param momentum: float, default None. Allow each test to modify the momentum value.
:return: None
"""
from datetime import datetime
# Allow overriding test sets
self.X_train = X_train if X_train else self.X_train
self.y_train = y_train if y_train else self.y_train
self.X_test = X_test if X_test else self.X_test
self.y_test = y_test if y_test else self.y_test
self.momentum = momentum if momentum != None else self.momentum
# Train using a fresh set of random weights.
self.weights = [np.random.uniform(self.rand_low, self.rand_high, shape) for shape in
self.weight_shapes]
self.train_accuracy = []
self.test_accuracy = []
if verbose:
print('\r|>{}| Dur: {} (Avg: {:.2f}s/epoch) Est. Completion Time: ?'.format(
' ' * number_of_epochs,
'0:00:00.000000',
0.0),
end='',
flush=True)
start = datetime.now()
for epoch in range(number_of_epochs):
# TODO add in shuffling of the input data
self.train_network()
self.calculate_accuracy()
if verbose:
print('\r|{}>{}| '
'Dur: {} (Avg {:.2f}s/epoch) '
'Est. Completion Time: {}'.format(
'=' * (epoch + 1), ' ' * (number_of_epochs - (epoch + 1)),
datetime.now() - start,
((datetime.now() - start) / (epoch + 1)).total_seconds(),
(datetime.now() + (datetime.now() - start) / (epoch + 1) * (
number_of_epochs - (epoch + 1)))
),
end='\n' if epoch + 1 == number_of_epochs else '',
flush=True)
# Use matplotlib to plot data and save it to disk.
print('Plotting Data')
plt.figure()
self.plot_data('Accuracies_eta{}_alpha{}_hidden{}.png'.format(self.learning_rate,
self.momentum,
self.hidden_layers_sizes))
plt.figure()
self.plot_cm(self.train_confusion_matrix,
r'Training $\eta$:{} $\alpha$:{} hidden:{}'.format(self.learning_rate,
self.momentum,
self.hidden_layers_sizes),
'Confusion_Matrix_eta{}_alpha{}_hidden{}.png'.format(self.learning_rate,
self.momentum,
self.hidden_layers_sizes))
plt.figure()
self.plot_cm(self.test_confusion_matrix,
r'Testing $\eta$:{} $\alpha$:{} hidden:{}'.format(self.learning_rate,
self.momentum,
self.hidden_layers_sizes),
'Testing_Confusion_Matrix_eta{}_alpha{}_hidden{}.png'.format(self.learning_rate,
self.momentum,
self.hidden_layers_sizes))
def plot_data(self, filename):
"""
Plot the accuracy data using matplotlib. For more information, look at the docs.
:param filename: The filename to save this figure.
:return: None
"""
fig, ax = plt.subplots(figsize=(10, 7.5))
fig.suptitle('Neural Network Accuracy\n'
r'$\eta$: {} $\alpha$: {} Hidden Layers: {}'.format(self.learning_rate,
self.momentum,
self.hidden_layers_sizes),
fontsize=18,
fontweight='bold')
ax.set_xlabel('Epoch')
ax.set_ylabel('Accuracy')
ax.tick_params(axis='x')
ax.tick_params(axis='y')
ax.yaxis.grid(True)
line1, = ax.plot(range(len(self.train_accuracy)),
self.train_accuracy,
label='training',
linewidth=2)
line2, = ax.plot(range(len(self.test_accuracy)),
self.test_accuracy,
label='testing',
linewidth=2)
ax.legend(loc='lower right')
plt.savefig(filename, dpi=300)
def plot_cm(self, cm, title, filename):
"""
Plot a given confusion matrix. See matplotlib for more information.
:param cm: Numpy ndarray. The confusion matrix to plot
:param title: str. The title to use.
:param filename: str. the filename
:return: None
"""
import itertools
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues, aspect='equal')
plt.title(title, fontsize=16, fontweight='bold')
cb = plt.colorbar()
cbytick_obj = plt.getp(cb.ax.axes, 'yticklabels')
# plt.setp(cbytick_obj)
tick_marks = range(10)
plt.xticks(tick_marks, range(self.number_of_classes))
plt.yticks(tick_marks, range(self.number_of_classes))
plt.ylabel('Actual', fontsize=14)
plt.xlabel('Predicted', fontsize=14)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black", fontsize=6)
plt.tight_layout()
plt.savefig(filename, dpi=300)
if __name__ == '__main__':
def load_data(filename):
"""
Load the mnist digit data.
:param filename: The filename of the data.
:return: Tuple of ndarrays corresponding to (target values, instances)
"""
import pandas as pd
from datetime import datetime
start = datetime.now()
print('Loading {}'.format(filename), end=' ... ', flush=True)
data = pd.read_csv(filename, header=None, index_col=0) / 255.0
# TODO Add this bias in the code.
data.insert(0, 'bias', np.ones((data.shape[0], 1)))
print('DONE {}s'.format((datetime.now() - start).total_seconds()), flush=True)
return data.values, data.index.values
# Load the data
X_train, y_train = load_data('https://pjreddie.com/media/files/mnist_train.csv')
X_test, y_test = load_data('https://pjreddie.com/media/files/mnist_test.csv')
nn20 = NeuralNetwork(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test,
number_of_inputs=784, number_of_classes=10, hidden_layers_sizes=[20])
nn50 = NeuralNetwork(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test,
number_of_inputs=784, number_of_classes=10, hidden_layers_sizes=[50])
nn100 = NeuralNetwork(X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test,
number_of_inputs=784, number_of_classes=10, hidden_layers_sizes=[100])
# nn20.fit(number_of_epochs=5, verbose=True)
# Run the following tests
nn20.fit(number_of_epochs=50, verbose=True)
nn50.fit(number_of_epochs=50, verbose=True)
nn100.fit(number_of_epochs=50, verbose=True)
nn100.fit(number_of_epochs=50, verbose=True, momentum=0)
nn100.fit(number_of_epochs=50, verbose=True, momentum=0.25)
nn100.fit(number_of_epochs=50, verbose=True, momentum=0.5)
# I didn't take the time to modify the testing and training data sets as per the assignment.
print('END')