-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcompute_metrics.py
244 lines (220 loc) · 9.09 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import json
from collections import defaultdict
import numpy as np
from metric import compute_bipartite_matching_metrics
def evaluate(ground_truth_path, prediction_path):
target_count = 0
target_type_counts = defaultdict(int)
generated_count = 0
generated_type_counts = defaultdict(int)
target_entities_without_type = 0
generated_entities_without_type = 0
metrics = []
counts = []
nested_counts = []
with open(ground_truth_path, "r") as f:
ground_truth = json.load(f)
with open(prediction_path, "r") as f:
predictions = json.load(f)
new_dict = {}
for k, v in enumerate(ground_truth.values()):
new_dict[str(k)] = v
ground_truth = new_dict
new_dict = {}
for k, v in enumerate(predictions.values()):
new_dict[str(k)] = v
predictions = new_dict
print("Length of ground truth:", len(ground_truth))
print("Length of predictions:", len(predictions))
# Ensure both files have matching document IDs
assert set(ground_truth.keys()) == set(
predictions.keys()
), "Mismatch in document IDs between ground truth and predictions."
exact_name_max = []
exact_name_precision = []
exact_name_recall = []
approx_name_max = []
approx_name_precision = []
approx_name_recall = []
multi_prop_max = []
multi_prop_precision = []
multi_prop_recall = []
for doc_id, doc_data in ground_truth.items():
target_entities = doc_data["entities"]
target_count += len(target_entities)
for entity in target_entities.values():
try:
target_type_counts[entity["type"]] += 1
except KeyError:
target_entities_without_type += 1
generated_output = predictions[doc_id]["entities"]
generated_entities = list(generated_output.values())
generated_count += len(generated_entities)
for entity in generated_entities:
if "type" in entity:
generated_type_counts[entity["type"]] += 1
else:
generated_entities_without_type += 1
for normalization in ["Max", "Precision", "Recall"]:
for measures in ["ExactName", "ApproxName", "MultiProp"]:
(
final_metrics,
count,
nested_count,
) = compute_bipartite_matching_metrics(
target_entities,
generated_entities,
measures=measures,
normalization=normalization,
establish_threshold=0.6,
)
if measures == "ExactName":
if normalization == "Max":
exact_name_max.append(final_metrics["normalized_similarity"])
elif normalization == "Precision":
exact_name_precision.append(
final_metrics["normalized_similarity"]
)
elif normalization == "Recall":
exact_name_recall.append(final_metrics["normalized_similarity"])
elif measures == "ApproxName":
if normalization == "Max":
approx_name_max.append(final_metrics["normalized_similarity"])
elif normalization == "Precision":
approx_name_precision.append(
final_metrics["normalized_similarity"]
)
elif normalization == "Recall":
approx_name_recall.append(
final_metrics["normalized_similarity"]
)
elif measures == "MultiProp":
if normalization == "Max":
multi_prop_max.append(final_metrics["normalized_similarity"])
metrics.append(final_metrics)
counts.append(count)
nested_counts.append(nested_count)
elif normalization == "Precision":
multi_prop_precision.append(
final_metrics["normalized_similarity"]
)
elif normalization == "Recall":
multi_prop_recall.append(final_metrics["normalized_similarity"])
# Compute and log metrics for generated text
keys = set(key for d in metrics for key in d.keys())
quantiles = [5, 10, 25, 50, 75, 90, 95]
def compute_quantiles(data, quantiles):
return {q: np.percentile(data, q) for q in quantiles}
avg_metrics = {
key: {
"average": np.mean(
[metric[key] for metric in metrics if key in metric.keys()]
),
"quantiles": compute_quantiles(
[metric[key] for metric in metrics if key in metric.keys()],
quantiles,
),
"raw_data": [metric[key] for metric in metrics if key in metric.keys()],
}
for key in keys
}
avg_metrics.update(
{
key
+ "_average": np.mean(
[metric[key] for metric in metrics if key in metric.keys()]
)
for key in keys
}
)
keys = set(key for d in counts for key in d.keys())
total_metrics = {
key: np.sum([count[key] for count in counts if key in count.keys()])
for key in keys
}
outer_keys = set(key for d in nested_counts for key in d.keys())
inner_keys = set(
key
for d in nested_counts
for inner_dict in d.values()
for key in inner_dict.keys()
)
total_nested_counts = {}
for k in outer_keys:
total_nested_counts[k] = {
key: np.sum(
[
count_dict[k][key]
for count_dict in nested_counts
if key in count_dict[k].keys()
]
)
for key in inner_keys
}
property_metrics = {}
for k in inner_keys:
property_metrics[k] = {
"acc_token": (
total_nested_counts["per_property_acc_token"][k]
/ total_nested_counts["key_matches"][k]
if total_nested_counts["key_matches"][k] > 0
else 0
),
"acc_aon": (
total_nested_counts["per_property_acc_aon"][k]
/ total_nested_counts["key_matches"][k]
if total_nested_counts["key_matches"][k] > 0
else 0
),
"key_coverage": (
total_nested_counts["key_matches"][k]
/ total_nested_counts["target_key_occurance"][k]
if total_nested_counts["target_key_occurance"][k] > 0
else 0
),
"key_precision": (
total_nested_counts["key_matches"][k]
/ total_nested_counts["pred_key_occurance"][k]
if total_nested_counts["pred_key_occurance"][k] > 0
else 0
),
}
print("Target Count:", target_count)
print("Generated Count:", generated_count)
print("Target Entities without type:", target_entities_without_type)
print("Generated Entities without type:", generated_entities_without_type)
avg_metrics.update(
{
# "avg_target_entities": avg_target_entities,
# "target_type_counts": target_type_counts,
# "avg_generated_entities": avg_generated_entities,
# "generated_type_counts": generated_type_counts,
# "avg_target_entities_without_type": avg_target_entities_without_type,
# "avg_generated_entities_without_type": avg_generated_entities_without_type,
"combined_coverage": total_metrics["established_entity_matches"]
/ total_metrics["target_entities_no_dup"],
"combined_precision": total_metrics["established_entity_matches"]
/ total_metrics["predicted_output_entities_no_dup"],
}
)
avg_metrics.update(property_metrics)
result = {}
result["exact_name_max"] = np.mean(exact_name_max)
result["exact_name_precision"] = np.mean(exact_name_precision)
result["exact_name_recall"] = np.mean(exact_name_recall)
result["approx_name_max"] = np.mean(approx_name_max)
result["approx_name_precision"] = np.mean(approx_name_precision)
result["approx_name_recall"] = np.mean(approx_name_recall)
result["multi_prop_max"] = np.mean(multi_prop_max)
result["multi_prop_precision"] = np.mean(multi_prop_precision)
result["multi_prop_recall"] = np.mean(multi_prop_recall)
result["target_count"] = target_count
result["generated_count"] = generated_count
result["target_type_counts"] = target_type_counts
result["generated_type_counts"] = generated_type_counts
result["target_entities_without_type"] = target_entities_without_type
result["generated_entities_without_type"] = generated_entities_without_type
result.update(avg_metrics)
with open(prediction_path[:-5] + "_metrics.json", "w") as f:
json.dump(result, f, indent=4)
return result