|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +from transformers import Dinov2Model, Dinov2PreTrainedModel |
| 4 | +import os |
| 5 | + |
| 6 | +class CustomDINONormModel(nn.Module): |
| 7 | + def __init__(self, name, num_classes=8): |
| 8 | + super(CustomDINONormModel, self).__init__() |
| 9 | + self.dino_model = Dinov2Model.from_pretrained(name) |
| 10 | + self.classifier = nn.Sequential(*[ |
| 11 | + nn.Linear(1024, 256), |
| 12 | + nn.LayerNorm(256), |
| 13 | + nn.Linear(256, 128), |
| 14 | + nn.ReLU(), |
| 15 | + nn.Linear(128, num_classes), |
| 16 | + ]) |
| 17 | + |
| 18 | + def forward(self, x, only_fc=False, only_feat=False, return_embed=False, **kwargs): |
| 19 | + """ |
| 20 | + Args: |
| 21 | + x: input tensor, depends on only_fc and only_feat flag |
| 22 | + only_fc: only use classifier, input should be features before classifier |
| 23 | + only_feat: only return pooled features |
| 24 | + return_embed: return word embedding, used for vat |
| 25 | + """ |
| 26 | + # Extract features using DinoV2 model |
| 27 | + if return_embed: |
| 28 | + embed = self.dino_model(x) |
| 29 | + return embed |
| 30 | + |
| 31 | + out_dict = self.dino_model(x, output_hidden_states=True, return_dict=True) |
| 32 | + last_hidden_state = out_dict['last_hidden_state'] |
| 33 | + pooled_output = torch.mean(last_hidden_state, 1) # Perform mean pooling |
| 34 | + |
| 35 | + if only_fc: |
| 36 | + logits = self.classifier(pooled_output) |
| 37 | + return logits |
| 38 | + |
| 39 | + if only_feat: |
| 40 | + return pooled_output |
| 41 | + |
| 42 | + logits = self.classifier(pooled_output) |
| 43 | + result_dict = {'logits': logits, 'feat': pooled_output} |
| 44 | + return result_dict |
| 45 | + |
| 46 | + |
| 47 | + def group_matcher(self, coarse=False, prefix=''): |
| 48 | + matcher = dict(stem=r'^{}dino_model.embeddings'.format(prefix), blocks=r'^{}dino_model.encoder.layer.(\d+)'.format(prefix)) |
| 49 | + return matcher |
| 50 | + |
| 51 | + def no_weight_decay(self): |
| 52 | + return [] |
| 53 | + |
| 54 | + |
| 55 | + |
| 56 | +def dinov2_vitl14(pretrained=True, pretrained_path=None, **kwargs): |
| 57 | + model = CustomDINONormModel(name='facebookresearch/dinov2_vitl14', **kwargs) |
| 58 | + return model |
| 59 | + |
| 60 | + |
| 61 | +def dinov2_vitb14(pretrained=True, pretrained_path=None, **kwargs): |
| 62 | + model = CustomDINONormModel(name='facebookresearch/dinov2_vitb14', **kwargs) |
| 63 | + return model |
0 commit comments