diff --git a/AMLNotebooks/01_Create_CreditRisk_AML_Pipeline.ipynb b/AMLNotebooks/01_Create_CreditRisk_AML_Pipeline.ipynb index 185fbaa..f8ca363 100644 --- a/AMLNotebooks/01_Create_CreditRisk_AML_Pipeline.ipynb +++ b/AMLNotebooks/01_Create_CreditRisk_AML_Pipeline.ipynb @@ -297,7 +297,7 @@ " \n", " df_data = df_data.fillna(df_data.mean())\n", " OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)\n", - " OH_cols= pd.DataFrame(OH_encoder.fit_transform(df_data[catColumns]),columns = list(OH_encoder.get_feature_names(catColumns)))\n", + " OH_cols= pd.DataFrame(OH_encoder.fit_transform(df_data[catColumns]),columns = list(OH_encoder.get_feature_names_out(catColumns)))\n", " \n", " # Remove categorical columns (will replace with one-hot encoding)\n", " numeric_cols = df_data.drop(catColumns, axis=1)\n", @@ -413,7 +413,7 @@ " \n", " df_data = df_data.fillna(df_data.mean())\n", " OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)\n", - " OH_cols= pd.DataFrame(OH_encoder.fit_transform(df_data[catColumns]),columns = list(OH_encoder.get_feature_names(catColumns)))\n", + " OH_cols= pd.DataFrame(OH_encoder.fit_transform(df_data[catColumns]),columns = list(OH_encoder.get_feature_names_out(catColumns)))\n", " \n", " # Remove categorical columns (will replace with one-hot encoding)\n", " numeric_cols = df_data.drop(catColumns, axis=1)\n",