Phi-4-multimodal هو نموذج متعدد الوسائط بالكامل يمكنه استخدام الصوت بالإضافة إلى النصوص والصور. لنرى كيف يمكننا استخدامه.
import requests
import torch
import soundfile
from PIL import Image
import soundfile
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig,pipeline,AutoTokenizer
model_path = 'Your Phi-4-multimodal location'
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype='auto',
_attn_implementation='flash_attention_2',
).cuda()
generation_config = GenerationConfig.from_pretrained(model_path, 'generation_config.json')
user_prompt = '<|user|>'
assistant_prompt = '<|assistant|>'
prompt_suffix = '<|end|>'
speech_prompt = "Based on the attached audio, generate a comprehensive text transcription of the spoken content."
prompt = f'{user_prompt}<|audio_1|>{speech_prompt}{prompt_suffix}{assistant_prompt}'
audio = soundfile.read('./ignite.wav')
inputs = processor(text=prompt, audios=[audio], return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1200,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(response)
إخلاء المسؤولية:
تمت ترجمة هذا المستند باستخدام خدمات الترجمة الآلية المعتمدة على الذكاء الاصطناعي. بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو معلومات غير دقيقة. يجب اعتبار المستند الأصلي بلغته الأصلية هو المصدر الرسمي. للحصول على معلومات حاسمة، يُوصى باللجوء إلى ترجمة بشرية احترافية. نحن غير مسؤولين عن أي سوء فهم أو تفسيرات خاطئة ناتجة عن استخدام هذه الترجمة.