-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions.R
203 lines (166 loc) · 6.53 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## FUNCTIONS FOR THE ANALYSIS
## Michael Malick
## bi_calc -------------------------------------------------
bi_calc <- function(data,
method,
type = NULL,
grid = NULL) {
## This function takes as input raw or truncated OSCUR model runs and
## calculates the bifurcation index. The output of the function is a data
## frame.
##
## Three methods for calculating the BI are available:
## - watters-bessey
## - sum of the differences between median start and end latitudes for
## a particular longitude ensemble
## - north-south-split
## - median starting latitude for the first grid cell that went north
## for a particular longitude ensemble
## - percent-all
## - percent of all grid cells that ended south of start latitude
##
## data = input data, e.g., oscurs.m
## method = character string identifying method used calculate BI
## type = character string identifying the data type (added to output df)
if(method == "percent-all") {
dat.sub <- data[data$ind == 1, ]
bi <- plyr::ddply(dat.sub, .(year), summarize,
bi = sum(end == "south") / length(lat))
}
if(method == "watters-bessey") {
sub.run <- plyr::ddply(data, .(run), summarize,
year = unique(year),
start.lon = unique(start.lon),
start.lat = unique(start.lat),
end.lat = tail(lat, 1))
start.end <- plyr::ddply(sub.run, .(year, start.lon), summarize,
med.start.lat = median(start.lat),
med.end.lat = median(end.lat),
bi = median(start.lat) - median(end.lat))
bi <- plyr::ddply(start.end, .(year),
bi = sum(bi))
}
if(method == "north-south-split") {
dat.sub <- data[data$ind == 1, ]
dat.split <- split(dat.sub, list(dat.sub$year, dat.sub$start.lon))
ns.split <- lapply(dat.split,
function(x) {
if(dim(x[x$end == "north", ])[1] > 0) {
x[which(x$end == "north")[1], ]
} else {
tail(x, 1)
}
})
ns.split <- plyr::rbind.fill(ns.split)
bi <- plyr::ddply(ns.split, .(year), summarize,
bi = median(start.lat))
}
bi$method <- method
if(!is.null(type))
bi$type <- type
if(!is.null(grid))
bi$grid <- grid
return(bi)
}
## plot_grid_end -------------------------------------------
plot_grid_end <- function(data, years, type, file = NULL) {
## This function takes as input raw or truncated OSCUR model runs and maps
## the starting position of each run, color coding by weather the drifter
## ended north or south of the starting latitude. The function does this for
## each year individually.
##
## data = oscur model runs
## years = vector of years
## type = 'all'; plot all years in a single plot
## 'indv'; plot each year in an indivial plot
## file = pdf file to save graphic to
if(!is.null(file) & type == "all")
pdf(file, width = 14, height = 10)
if(!is.null(file) & type == "indv")
pdf(file, width = 6, height = 6)
if(type == "all")
par(mfrow = c(7, 7), mar = c(0, 0, 0, 0), oma = c(1, 1, 1, 1))
if(type == "indv")
par(mar = c(0, 0, 0, 0), oma = c(1, 1, 1, 1))
for(j in years) {
dat.sub <- data[data$year == j, ]
grid2 <- dat.sub[dat.sub$ind == 1, ]
grid2.n <- grid2[grid2$end == "north", ]
grid2.s <- grid2[grid2$end == "south", ]
plot(1, 1, type = "n",
xlim = c(-160, -120),
ylim = c(30, 60),
ylab = "",
xlab = "",
axes = FALSE)
plot(countriesLow, add = TRUE,
col = "grey80",
border = "grey70",
lwd = 0.5)
points(grid2.n$lon, grid2.n$lat, pch = 16, cex = 0.8,
col = "steelblue")
points(grid2.s$lon, grid2.s$lat, pch = 16, cex = 0.8,
col = "tomato")
text(x = -123, y = 59, labels = paste(j))
box(col = "grey70")
}
if(!is.null(file))
dev.off()
}
## plot_drifters -------------------------------------------
plot_drifters <- function(data, years, type, file = NULL) {
## This function takes as input raw or truncated OSCUR model runs and maps
## each drifter path for each year, color coding by weather the drifter
## ended north or south of the starting latitude.
##
## data = oscur model runs
## years = vector of years
## type = 'all'; plot all years in a single plot
## 'indv'; plot each year in an indivial plot
## file = pdf file to save graphic to
if(!is.null(file) & type == "all")
pdf(file, width = 14, height = 10)
if(!is.null(file) & type == "indv")
pdf(file, width = 6, height = 6)
if(type == "all")
par(mfrow = c(7, 7), mar = c(0, 0, 0, 0), oma = c(1, 1, 1, 1))
if(type == "indv")
par(mar = c(0, 0, 0, 0), oma = c(1, 1, 1, 1))
for(j in years) {
dat.sub <- data[data$year == j, ]
dat.sub$run.col <- ifelse(dat.sub$end == "south",
"tomato", "steelblue")
n.runs <- length(unique(dat.sub$run))
runs <- unique(dat.sub$run)
plot(1, 1, type = "n",
xlim = c(-170, -110),
ylim = c(20, 60),
ylab = "",
xlab = "",
axes = FALSE)
plot(countriesLow, add = TRUE,
col = "grey80",
border = "grey70",
lwd = 0.5)
d_ply(dat.sub, .(run),
function(x) lines(x$lon, x$lat, col = x$run.col, lwd = 0.5))
text(x = -113, y = 59, labels = paste(j))
box(col = "grey70")
}
if(!is.null(file))
dev.off()
}
## subset_grid ---------------------------------------------
subset_grid <- function(data,
north = 59,
south = 35,
west = -145,
east = -121) {
## This function takes as input oscurs model runs and subsets the starting
## grid according to the specified coordinates.
dat1 <- data[data$start.lon >= west, ]
dat2 <- dat1[dat1$start.lat >= south, ]
dat3 <- dat2[dat2$start.lon <= east, ]
dat4 <- dat3[dat3$start.lat <= north, ]
return(dat4)
}