-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsplit_data.py
41 lines (31 loc) · 1.3 KB
/
split_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import argparse
import random
import json
import os
parser = argparse.ArgumentParser(description='Splitting json dataset')
parser.add_argument('--dataset', dest='dataset', type=str, required=True, help='path of the dataset json file')
parser.add_argument('--valdim', dest='valdim', type=float, default=0.1, help='dimension of the validation set')
parser.add_argument("--trainvaldir", dest="traindir", type=str, default="dataset/trainval/", help="Trainval folder")
args = parser.parse_args()
dataset = args.dataset
valdim = args.valdim
trainvaldir = args.traindir
assert (valdim <= 1.0 and valdim >= 0.0)
assert (os.path.isfile(dataset))
if not os.path.exists(trainvaldir):
os.makedirs(trainvaldir)
with open(dataset, 'r') as dfile:
print('Reading json dataset')
json_data = json.load(dfile)
json_data = list(json_data.items())
random.shuffle(json_data)
val_size = int(len(json_data) * valdim)
val_data= dict(json_data[:val_size])
train_data = dict(json_data[val_size:])
with open(trainvaldir + 'train.json', 'w') as train_file:
print('Writing training dataset file')
json.dump(train_data, train_file)
with open(trainvaldir + 'val.json', 'w') as val_file:
print('Writing validation dataset file')
json.dump(val_data, val_file)
print("Operation completed")