-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVideoClassifier.py
170 lines (135 loc) · 7.68 KB
/
VideoClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import tensorflow as tf
import numpy as np
import os
class VideoClassifier:
# Define the computational graph with lstm_hidden nodes for the LSTM,
# num_classes for the softmax and shape for the inputs X (videos), y (classes):
def __init__(self, lstm_hidden, num_classes, videos_shape, classes_shape):
# Count number of total epochs in case of multiple trainings:
self.tot_epochs = 0
# Input (videos' frames) and output (indices) of the network:
self.X = tf.placeholder(tf.float32, shape=videos_shape)
self.y = tf.placeholder(tf.uint8, shape=classes_shape)
self.batch_size = tf.shape(self.X)[0]
# Reshape and unstack the input so that it can be fed to the LSTM:
# Reshape X to [batch_size, num frames, width*height*channels] and then
# unstack it to a list of length num frames containing tensors of
# shape [batch_size, width*height*channels]:
X_reshaped = tf.reshape(self.X, [self.batch_size, videos_shape[1], np.prod(videos_shape[2:])])
X_unstacked = tf.unstack(X_reshaped, videos_shape[1], axis=1)
# LSTM part:
rnn_cell = tf.contrib.rnn.BasicLSTMCell(lstm_hidden)
rnn_cell = tf.nn.rnn_cell.DropoutWrapper(rnn_cell, output_keep_prob=0.2)
rnn_outputs, rnn_states = tf.contrib.rnn.static_rnn(rnn_cell, X_unstacked, dtype=tf.float32)
# Output of the correct size:
out_weights = tf.Variable(tf.random_normal([lstm_hidden, num_classes]))
out_bias = tf.Variable(tf.random_normal([num_classes]))
self.prediction = tf.matmul(rnn_outputs[-1], out_weights) + out_bias
# Loss:
self.y_one_hot = tf.one_hot(self.y, num_classes)
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.prediction, labels=self.y_one_hot))
# Accuracy of the network:
correct_pred = tf.equal(tf.argmax(self.prediction, axis=1), tf.argmax(self.y_one_hot, axis=1))
self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initialize the graph:
tf.global_variables_initializer().run()
# TensorBoard:
def set_tensorboard_folder(self, tensorboard_folder, sess):
self.tensorboard_writer = tf.summary.FileWriter(tensorboard_folder, sess.graph)
# Checkpoint folder:
def set_checkpoint_folder(self, checkpoint_folder):
self.checkpoint_folder = checkpoint_folder
if not os.path.exists(self.checkpoint_folder):
os.makedirs(self.checkpoint_folder)
# Train the LSTM on the dataset:
def train(self,
train_videos, train_classes, val_videos, val_classes,
optimizer, batch_size, epochs,
sess, verbose=True, save_checkpoint=10):
# Optimize the loss function:
self.train_step = optimizer.minimize(self.loss)
sess.run(tf.variables_initializer(optimizer.variables()))
#for epoch in range(epochs):
while self.tot_epochs < epochs:
self.tot_epochs += 1
print("Epoch {}/{}:".format(self.tot_epochs, epochs))
# Update tot_loss and tot_accuracy and log to TensorBoard (training set):
tot_loss, tot_accuracy = self._iterate_dataset("train", train_videos, train_classes, batch_size, sess, verbose)
if self.tensorboard_writer:
# TODO: move this inside the graph.
summary = tf.Summary(value=[tf.Summary.Value(tag="train_loss", simple_value=tot_loss)])
self.tensorboard_writer.add_summary(summary, self.tot_epochs)
summary = tf.Summary(value=[tf.Summary.Value(tag="train_accuracy", simple_value=tot_accuracy)])
self.tensorboard_writer.add_summary(summary, self.tot_epochs)
# Update tot_loss and tot_accuracy and log to TensorBoard (validation set):
tot_loss, tot_accuracy = self._iterate_dataset("eval", val_videos, val_classes, batch_size, sess, verbose)
if self.tensorboard_writer:
# TODO: move this inside the graph.
summary = tf.Summary(value=[tf.Summary.Value(tag="val_loss", simple_value=tot_loss)])
self.tensorboard_writer.add_summary(summary, self.tot_epochs)
summary = tf.Summary(value=[tf.Summary.Value(tag="val_accuracy", simple_value=tot_accuracy)])
self.tensorboard_writer.add_summary(summary, self.tot_epochs)
# Save checkpoint:
if self.checkpoint_folder and self.tot_epochs % save_checkpoint == 0:
self.save(os.path.join(self.checkpoint_folder, "epoch_" + str(self.tot_epochs) + ".ckpt"), sess)
# Predict a video of shape [num frames, ...]
def predict(self, video, sess):
return sess.run(self.prediction, feed_dict={self.X: [video]})
# Predict a batch of videos of shape [batch_size, num frames, ...]
def predict_batch(self, videos, sess):
return sess.run(self.prediction, feed_dict={self.X: videos})
# Save the model specifying a path:
def save(self, path, sess):
saver = tf.train.Saver()
saver.save(sess, path)
# Load the model specifying a path:
def load(self, path, sess):
saver = tf.train.Saver()
saver.restore(sess, path)
def _iterate_dataset(self, mode, videos, classes, batch_size, sess, verbose):
if mode == "train":
loss_tag = "train_loss"
accuracy_tag = "train_accuracy"
else:
loss_tag = "val_loss"
accuracy_tag = "val_accuracy"
# Let mu_i = vloss for each iteration, let's say the iteration is N,
# bs is the batch_size of the current iteration,
# sum_loss = mu_1 + mu_2 + ... + mu_N,
# tot_loss = (args.batch_size * sum_loss + bs * mu_{N+1}) / (N * args.batch_size + bs).
# The same thing applies for sum_accuracy and tot_accuracy.
# NOTE: distinguish between args.batch_size and bs is important in order to
# consider the right number of elements for each iteration:
N = 0
sum_loss = 0
tot_loss = 0
sum_accuracy = 0
tot_accuracy = 0
# SGD random indices:
new_indices = np.random.randint(videos.shape[0], size=videos.shape[0])
# Iterate through the dataset:
for idx in range(0, videos.shape[0], batch_size):
# Extract the following batch_size indices:
L = min(idx+batch_size, videos.shape[0])
if mode == "train":
rand_idx = new_indices[idx:L]
else:
rand_idx = range(idx, L)
minibatch_X = videos[rand_idx,:]
minibatch_y = classes[rand_idx]
# Perform a training step:
if mode == "train":
vloss, vaccuracy, bs, _ = sess.run([self.loss, self.accuracy, self.batch_size, self.train_step], feed_dict={self.X: minibatch_X, self.y: minibatch_y})
else:
vloss, vaccuracy, bs = sess.run([self.loss, self.accuracy, self.batch_size], feed_dict={self.X: minibatch_X, self.y: minibatch_y})
# Update tot_loss and tot_accuracy:
N = N + 1
tot_loss = (batch_size * sum_loss + bs * vloss) / (N * batch_size + bs)
sum_loss = sum_loss + vloss
tot_accuracy = (batch_size * sum_accuracy + bs * vaccuracy) / (N * batch_size + bs)
sum_accuracy = sum_accuracy + vaccuracy
if verbose:
print("Progress: {}/{} - {}: {:2.3} - {}: {:2.3}".format(L, videos.shape[0], loss_tag, tot_loss, accuracy_tag, tot_accuracy), end="\r")
if verbose:
print("Progress: {}/{} - {}: {:2.3} - {}: {:2.3}".format(videos.shape[0], videos.shape[0], loss_tag, tot_loss, accuracy_tag, tot_accuracy))
return tot_loss, tot_accuracy