-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnlsim.m
21 lines (16 loc) · 934 Bytes
/
nlsim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
function [one_sample, all_samples] = nlsim(ode, fs, N, N_steps_per_sample)
% Discretize *ode* at *1/fs* time step, return both function *one_step* of the next state (of the discretized system) or *all_samples* of multiple next states (starting from a given initial state). Both shall be computationally efficient (see *expand()* and *mapaccum()* of CasADi).
import casadi.*
[one_step, states, controls, params] = nlsim_one_step(ode, fs, N_steps_per_sample);
X = states;
for i=1:N_steps_per_sample
X = one_step(X, controls, params);
end
% Create a function that simulates all step propagation on a sample
one_sample = Function('one_sample',{states, controls, params}, {X}, {'x','u','p'},{'x_next'});
% speedup trick: expand into scalar operations
one_sample = one_sample.expand();
%% Simulating the system
if nargout > 1
all_samples = one_sample.mapaccum('all_samples', N); %mapaccum is a bit faster than the for loop
end