-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve_captchas_using_model.py
143 lines (113 loc) · 4.92 KB
/
solve_captchas_using_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from tensorflow import keras
from helpers import resize_to_fit
from helpers import get_captcha_url
import numpy as np
import imutils
import cv2
import pickle
import requests
import cv2
MODEL_FILENAME = "captcha_models/captcha_model"
MODEL_LABELS_FILENAME = "captcha_models/captcha_model_labels.dat"
# Load up the model labels (so we can translate model predictions to actual letters)
with open(MODEL_LABELS_FILENAME, "rb") as f:
lb = pickle.load(f)
# Load the trained neural network
model = keras.models.load_model(MODEL_FILENAME)
# Grab captcha from the website to try to solve it
captcha_image_file = requests.get(get_captcha_url())
if captcha_image_file.status_code == requests.codes.OK: #pylint: disable=E1101
# Load the image and convert it to grayscale
image = np.asarray(bytearray(captcha_image_file.content), dtype="uint8")
image = cv2.imdecode(image, cv2.IMREAD_GRAYSCALE)
# Increase image size for better recognition
image = cv2.resize(image, None, fx=3.3, fy=3.3, interpolation=cv2.INTER_CUBIC)
temp_img = image.copy()
# Remove noise from image
image = cv2.fastNlMeansDenoising(src=image, h=40)
# Convert it to PIL image to work with pixels directly
#img = Image.fromarray(image)
#img = img.convert("RGBA")
#pixdata = img.load()
# Make the letters bolder for easier recognition
height, width = image.shape
for y in range(width):
for x in range(height):
if image[x, y] < 90:
image[x, y] = 0
for y in range(width):
for x in range(height):
if image[x, y] < 120: #orig 136
image[x, y] = 0
for y in range(width):
for x in range(height):
if image[x, y] > 0:
image[x, y] = 255
#image = cv2.cvtColor(np.array(img), cv2.COLOR_BGR2GRAY)
# threshold the image (convert it to pure black and white)
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# find the contours (continuous blobs of pixels) the image
contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# # Hack for compatibility with different OpenCV versions
contours = contours[0] #if imutils.is_cv2() else contours[1]
letter_image_regions = []
# Now we can loop through each of the four contours and extract the letter
# inside of each one
for contour in contours:
# Get the rectangle that contains the contour
(x, y, w, h) = cv2.boundingRect(contour)
# If countour width and height is less than expected than skip it
if w < 20 or h < 20:
continue
# Compare the width of the contour to detect letters that are conjoined into one chunk
if w > 79:
# This contour is too wide to be a single letter!
# Split it in half into two letter regions!
half_width = int(w / 2)
letter_image_regions.append((x, y, half_width, h))
letter_image_regions.append((x + half_width, y, half_width, h))
else:
# This is a normal letter by itself
letter_image_regions.append((x, y, w, h))
# If we found more or less than 5 letters in the captcha, our letter extraction
# didn't work correcly. Skip the image instead of saving bad training data!
if len(letter_image_regions) == 5:
# Sort the detected letter images based on the x coordinate to make sure
# we are processing them from left-to-right so we match the right image
# with the right letter
letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])
# Create an output image and a list to hold our predicted letters
output = cv2.merge([temp_img] * 3)
predictions = []
# loop over the letters
for letter_bounding_box in letter_image_regions:
# Grab the coordinates of the letter in the image
x, y, w, h = letter_bounding_box
# For saving original height to detect difference b/w upper and lower characters
(x2, y2, w2, h2) = cv2.boundingRect(image)
# Extract the letter from the original image with a 2-pixel margin around the edge
letter_image = image[0:y + h2 + 2, x - 2:x + w + 2]
# Re-size the letter image to 20x20 pixels to match training data
letter_image = resize_to_fit(letter_image, 20, 20)
# Turn the single image into a 4d list of images to make Keras happy
letter_image = np.expand_dims(letter_image, axis=2)
letter_image = np.expand_dims(letter_image, axis=0)
# Ask the neural network to make a prediction
prediction = model.predict(letter_image)
# Convert the one-hot-encoded prediction back to a normal letter
letter = lb.inverse_transform(prediction)[0]
predictions.append(letter)
# draw the prediction on the output image
cv2.rectangle(output, (x - 2, y - 2), (x + w + 4, y + h + 4), (128, 0, 255), 1)
cv2.putText(output, letter, (x - 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (128, 0, 255), 2)
# Print the captcha's text
captcha_text = "".join(predictions)
print("CAPTCHA text is: {}".format(captcha_text))
# Show the annotated image
cv2.imshow("Output", output)
cv2.waitKey()
else:
print("More or less letters found: " + str(len(letter_image_regions)))