-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathingest.py
162 lines (139 loc) · 5.54 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import glob
import os
from multiprocessing import Pool
from typing import List
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.document_loaders import (CSVLoader, PyMuPDFLoader, TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader)
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from tqdm import tqdm
from constants import CHROMA_SETTINGS
load_dotenv()
# Load environment variables
persist_directory = os.environ.get("PERSIST_DIRECTORY")
# directory where source documents to be ingested are located
source_directory = os.environ.get("SOURCE_DIRECTORY", "source_documents")
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
chunk_size = 1000
chunk_overlap = 100
# Map file extensions to document loaders and their arguments
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".eml": (UnstructuredEmailLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [
file_path for file_path in all_files if file_path not in ignored_files
]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(
total=len(filtered_files), desc="Loading new documents", ncols=80
) as pbar:
for i, docs in enumerate(
pool.imap_unordered(load_single_document, filtered_files)
):
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def does_vectorstore_exist(persist_directory: str) -> bool:
"""
Checks if vectorstore exists
"""
if os.path.exists(os.path.join(persist_directory, "index")):
if os.path.exists(
os.path.join(persist_directory, "chroma-collections.parquet")
) and os.path.exists(
os.path.join(persist_directory, "chroma-embeddings.parquet")
):
list_index_files = glob.glob(os.path.join(persist_directory, "index/*.bin"))
list_index_files += glob.glob(
os.path.join(persist_directory, "index/*.pkl")
)
# At least 3 documents are needed in a working vectorstore
if len(list_index_files) > 3:
return True
return False
def main():
# Create embeddings
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
if does_vectorstore_exist(persist_directory):
# Update and store locally vectorstore
print(f"Appending to existing vectorstore at {persist_directory}")
db = Chroma(
persist_directory=persist_directory,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
)
collection = db.get()
texts = process_documents(
[metadata["source"] for metadata in collection["metadatas"]]
)
print(f"Creating embeddings. May take some minutes...")
db.add_documents(texts)
else:
# Create and store locally vectorstore
print("Creating new vectorstore")
texts = process_documents()
print(f"Creating embeddings. May take some minutes...")
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=persist_directory,
client_settings=CHROMA_SETTINGS,
)
db.persist()
db = None
print(
f"Ingestion complete! You can now run chat_with_docs.py to query your documents"
)
if __name__ == "__main__":
main()