-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsummed_optical_flow.py
109 lines (87 loc) · 3.38 KB
/
summed_optical_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import numpy as np
import sys,os
from glob import glob
from config.resources import video_resource
from config.global_parameters import frameWidth, frameHeight
import scenedetect
from utils import dump_pkl, load_pkl
from model_utils import optical_flow_model
from video import sequencify
def scene_detect(videoPath):
sceneDetect = []
detector_list = [scenedetect.detectors.ThresholdDetector(threshold = 30, min_percent = 0.9)]
print videoPath
video_framerate, frames_read = scenedetect.detect_scenes_file(videoPath, sceneDetect, detector_list)
return sceneDetect
def extract_scenes(videoPath, shot_boundaries):
video_capture = cv2.VideoCapture(videoPath)
for i in range(len(shot_boundaries)-1):
start = shot_boundaries[i]
end = shot_boundaries[i+1]
scene = []
for i in range(start, end+1, 30):
video_capture.set(cv2.CAP_PROP_POS_FRAMES,i)
success,frame = video_capture.read()
if not success:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = cv2.resize(frame, (frameWidth, frameHeight))
scene.append(frame)
yield scene
def stacked_scene_optical_flow(scene):
stackedOpticalFlow = np.zeros((2, frameWidth, frameHeight))
for i in range(1,len(scene)):
img = scene[i]
prev = scene[i-1]
flow = cv2.calcOpticalFlowFarneback(prev, img, 0.5, 3, 15, 3, 5, 1.2, 0)
del img
del prev
flow = np.reshape(flow ,(2, frameWidth, frameHeight))
stackedOpticalFlow += flow
del flow
return stackedOpticalFlow
def optical_flow(videoPath):
shot_boundaries = scene_detect(videoPath)
opticalFlow = []
for scene in extract_scenes(videoPath, shot_boundaries):
opticalFlow.append(stacked_scene_optical_flow(scene))
opticalFlow = np.array(opticalFlow)
print opticalFlow.shape
return opticalFlow
def gather_optical_flow_features(genre, limit_videos = None):
genre_OF_features = []
videoPaths = glob(os.path.join(video_resource,'train',genre)+'/*')[:limit_videos]
for videoPath in videoPaths:
videoFeatures = optical_flow(videoPath)
print videoFeatures.shape
genre_OF_features.append(videoFeatures)
print "*"*90
dump_pkl(genre_OF_features, genre+"_ultimate_OF")
def create_model(genres):
trainingData = []
trainingLabels = []
number_of_classes=len(genres)
for genreIndex, genre in enumerate(genres):
try:
genreFeatures = load_pkl(genre+"_ultimate_OF")
except Exception as e:
print e
return
for videoFeatures in genreFeatures:
print videoFeatures.shape
if videoFeatures.shape==(0,):
continue
for scene in videoFeatures:
for sequence in sequencify(scene,4):
trainingData.append(sequence)
trainingLabels.append(genreIndex)
trainingData = np.array(trainingData)
trainingLabels = np.array(trainingLabels)
print trainingData.shape
print trainingLabels.shape
model = optical_flow_model(number_of_classes)
model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(trainingData, trainingLabels)
if __name__=="__main__":
create_model(['action','drama','horror','romance'])