@@ -171,29 +171,29 @@ magnitude, numerical stability is improved in the solving process.
171
171
172
172
## Equations specification
173
173
The following set of modelling equations should be included in ESM.
174
- The environmental objective $\mathbf {LCIA_ {tot}}$ is defined as the sum of the impacts of the infrastructure, operation,
175
- and resource parts, namely $\mathbf {LCIA_ {infra}}$, $\mathbf {LCIA_ {op}}$, and $\mathbf {LCIA_ {res}}$.
174
+ The environmental objective ${LCIA_ {tot}}$ is defined as the sum of the impacts of the infrastructure, operation,
175
+ and resource parts, namely ${LCIA_ {infra}}$, ${LCIA_ {op}}$, and ${LCIA_ {res}}$.
176
176
The infrastructure impact is derived from the normalized specific impact ($lcia^{norm}_ {infra}$), which is computed
177
177
from the infrastructure LCI dataset. This value is then divided by the technology's lifetime in the ESM
178
- ($n_ {ESM}$), and scaled with the technology's installed capacity ($\mathbf {F}$). The operation and resource impacts are
178
+ ($n_ {ESM}$), and scaled with the technology's installed capacity (${F}$). The operation and resource impacts are
179
179
respectively derived from the operation and resource normalized specific impacts ($lcia^{norm}_ {op}$ and
180
180
$lcia^{norm}_ {res}$), which are respectively computed from the operation and resource LCI datasets, and scaled
181
- with the annual energy production (\mathbf {F_t} \times t_ {op}$).
181
+ with the annual energy production ({F_t} \times t_ {op}$).
182
182
183
183
$$
184
- \mathbf {LCIA_{tot}}(k) = \sum_{j \in TECH} \left( \mathbf {LCIA_{infra}}(j, k) + \mathbf {LCIA_{op}}(j, k) \right) + \sum_{r \in RES} \mathbf {LCIA_{res}}(r, k) \quad \forall k \in ENV
184
+ {LCIA_{tot}}(k) = \sum_{j \in TECH} \left( {LCIA_{infra}}(j, k) + {LCIA_{op}}(j, k) \right) + \sum_{r \in RES} {LCIA_{res}}(r, k) \quad \forall k \in ENV
185
185
$$
186
186
187
187
$$
188
- \mathbf {LCIA_{infra}}(j, k) = lcia_{infra}^{norm}(j, k) \cdot \mathbf {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV
188
+ {LCIA_{infra}}(j, k) = lcia_{infra}^{norm}(j, k) \cdot {F}(j) \cdot \frac{1}{n_{ESM}(j)} \quad \forall (j, k) \in TECH \times ENV
189
189
$$
190
190
191
191
$$
192
- \mathbf {LCIA_{op}}(j, k) = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} \mathbf {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \times ENV
192
+ {LCIA_{op}}(j, k) = lcia_{op}^{norm}(j, k) \cdot \sum_{t \in T} {F_t}(j, t) \cdot t_{op}(t) \quad \forall (j, k) \in TECH \times ENV
193
193
$$
194
194
195
195
$$
196
- \mathbf {LCIA_{res}}(r, k) = lcia_{res}^{norm}(r, k) \cdot \sum_{t \in T} \mathbf {F_t}(r, t) \cdot t_{op}(t) \quad \forall (r, k) \in RES \times ENV
196
+ {LCIA_{res}}(r, k) = lcia_{res}^{norm}(r, k) \cdot \sum_{t \in T} {F_t}(r, t) \cdot t_{op}(t) \quad \forall (r, k) \in RES \times ENV
197
197
$$
198
198
199
199
0 commit comments