Skip to content

Commit 1d33fd0

Browse files
author
HoaNP
committed
calculate sum of GCD(i,j) of all pairs
1 parent 91608b7 commit 1d33fd0

File tree

1 file changed

+85
-0
lines changed

1 file changed

+85
-0
lines changed

Diff for: Math/gcd/gcd_sum.cpp

+85
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,85 @@
1+
#include <bits/stdc++.h>
2+
using namespace std;
3+
4+
#define ms(s, n) memset(s, n, sizeof(s))
5+
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
6+
#define FORd(i, a, b) for (int i = (a) - 1; i >= (b); i--)
7+
#define FORall(it, a) for (__typeof((a).begin()) it = (a).begin(); it != (a).end(); it++)
8+
#define sz(a) int((a).size())
9+
#define present(t, x) (t.find(x) != t.end())
10+
#define all(a) (a).begin(), (a).end()
11+
#define uni(a) (a).erase(unique(all(a)), (a).end())
12+
#define pb push_back
13+
#define pf push_front
14+
#define mp make_pair
15+
#define fi first
16+
#define se second
17+
#define prec(n) fixed<<setprecision(n)
18+
#define bit(n, i) (((n) >> (i)) & 1)
19+
#define bitcount(n) __builtin_popcountll(n)
20+
typedef long long ll;
21+
typedef unsigned long long ull;
22+
typedef long double ld;
23+
typedef pair<int, int> pi;
24+
typedef vector<int> vi;
25+
typedef vector<pi> vii;
26+
const int MOD = (int) 1e9 + 7;
27+
const int MOD2 = (int) 1e8 + 7;
28+
const int INF = (int) 1e9;
29+
const ll LINF = (ll) 1e18;
30+
const ld PI = acos((ld) -1);
31+
const ld EPS = 1e-9;
32+
inline ll gcd(ll a, ll b) {ll r; while (b) {r = a % b; a = b; b = r;} return a;}
33+
inline ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
34+
inline ll fpow(ll n, ll k, int p = MOD) {ll r = 1; for (; k; k >>= 1) {if (k & 1) r = r * n % p; n = n * n % p;} return r;}
35+
template<class T> inline int chkmin(T& a, const T& val) {return val < a ? a = val, 1 : 0;}
36+
template<class T> inline int chkmax(T& a, const T& val) {return a < val ? a = val, 1 : 0;}
37+
inline ll isqrt(ll k) {ll r = sqrt(k) + 1; while (r * r > k) r--; return r;}
38+
inline ll icbrt(ll k) {ll r = cbrt(k) + 1; while (r * r * r > k) r--; return r;}
39+
inline void addmod(int& a, int val, int p = MOD) {if ((a = (a + val)) >= p) a -= p;}
40+
inline void submod(int& a, int val, int p = MOD) {if ((a = (a - val)) < 0) a += p;}
41+
inline int mult(int a, int b, int p = MOD) {return (ll) a * b % p;}
42+
inline int inv(int a, int p = MOD) {return fpow(a, p - 2, p);}
43+
inline int sign(ld x) {return x < -EPS ? -1 : x > +EPS;}
44+
inline int sign(ld x, ld y) {return sign(x - y);}
45+
#define db(x) cerr << #x << " = " << (x) << ", ";
46+
#define endln cerr << "\n";
47+
48+
//Given a number N, find sum of all GCDs that can be formed by selecting all the pairs from 1 to N.
49+
50+
const int N = 12;
51+
int phi[N + 1];
52+
int prime[N + 1];
53+
long long G[N + 1];
54+
55+
int main() {
56+
// Compute phi[n]
57+
for (int p = 1; p <= N; ++ p) phi[p] = p;
58+
for (int p = 2; p <= N; ++ p)
59+
if (phi[p] == p)
60+
for (int n = p; n <= N; n += p)
61+
phi[n] = phi[n]/p*(p-1);
62+
63+
// Compute prime[n] -> Largest prime that divides n
64+
for (int p = 1; p <= N; ++ p) prime[p] = 0;
65+
for (int p = 2; p <= N; ++ p)
66+
if (prime[p] == 0)
67+
for (int n = p; n <= N; n += p) prime[n] = max(prime[n], p);
68+
69+
G[1] = 1;
70+
for (int n = 2; n <= N; ++ n) {
71+
int p = 1;
72+
int k = 0;
73+
while (p <= n/prime[n] && n % (p * prime[n]) == 0) {
74+
p *= prime[n];
75+
++ k;
76+
}
77+
G[n] = ((k+1)*p - k*p/prime[n]) * G[n/p];
78+
}
79+
80+
G[1] = G[1] - 1;
81+
for (int n = 2; n <= N; ++ n) G[n] += G[n-1] - n;
82+
cout << G[N] << endl;
83+
}
84+
85+

0 commit comments

Comments
 (0)