-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain text and SI text.r
80 lines (69 loc) · 2.78 KB
/
main text and SI text.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#' ---
#' title: Results
#' output: word_document
#' ---
#+ echo=F
source("init.r")
library(igraph)
library(spdep)
####################################################################################
## Number and proportion of zhu houses
##
table(hh$zhubo1) # no. zhu-labelled houses with Mosuo heads
nrow(subset(hh, zhubo1==1)) / nrow(hh) * 100 # proportion of zhubo houses
####################################################################################
## Join count stats for spatial autocorrelation of zhubo houses
##
# make social networks for each village
# loop over each village separately, saving each adjacency matrix into variables of the form adj.X.village,
# where X is the network type (individual gifts, household gifts, farm work) and village is village number
village_ids = unique(hh$VillageID)
for (village in village_ids) {
# get unique households as vertices
# households = unique(subset(hh, Ego.VillageID==village, select=c(Ego.HH, Ego.VillageID, Ego.zhubo1)))
households = hh %>%
filter(VillageID==village) %>%
select(Ego.HH=HH, Ego.VillageID=VillageID, Ego.zhubo1=zhubo1)
# distance
dat = subset(hh.dyads, Ego.VillageID==village & !is.na(Distance), select=c(Ego.HH, Alter.HH, Distance))
g.dist = graph.data.frame(dat, vertices=households, directed=T) # turn relevant subset into a graph object
assign( paste("adj", "dist", village, sep="."),
get.adjacency( g.dist, sparse=F, attr="Distance" ) ) # create adjaceny matrix
# also create list of witch houses for current village
assign( paste("zhubo", village, sep="."), households)
}
# clean up
rm(dat, households, village, g.dist, village_ids)
# set up factors
zhubo.1$zhubo = as.factor(zhubo.1$Ego.zhubo1)
zhubo.2$zhubo = as.factor(zhubo.2$Ego.zhubo1)
zhubo.5$zhubo = as.factor(zhubo.5$Ego.zhubo1)
zhubo.6$zhubo = as.factor(zhubo.6$Ego.zhubo1)
zhubo.8$zhubo = as.factor(zhubo.8$Ego.zhubo1)
levels(zhubo.1$zhubo) = c("Non-zhubo", "Zhubo")
levels(zhubo.2$zhubo) = c("Non-zhubo", "Zhubo")
levels(zhubo.5$zhubo) = c("Non-zhubo", "Zhubo")
levels(zhubo.6$zhubo) = c("Non-zhubo", "Zhubo")
levels(zhubo.8$zhubo) = c("Non-zhubo", "Zhubo")
# join-counts per village
lw1 = mat2listw(adj.dist.1)
lw2 = mat2listw(adj.dist.2)
lw5 = mat2listw(adj.dist.5)
lw6 = mat2listw(adj.dist.6)
lw8 = mat2listw(adj.dist.8)
jc.1 = joincount.multi(zhubo.1$zhubo, listw=lw1, zero.policy=T)
jc.2 = joincount.multi(zhubo.2$zhubo, listw=lw2, zero.policy=T)
jc.5 = joincount.multi(zhubo.5$zhubo, listw=lw5, zero.policy=T)
jc.6 = joincount.multi(zhubo.6$zhubo, listw=lw6, zero.policy=T)
jc.8 = joincount.multi(zhubo.8$zhubo, listw=lw8, zero.policy=T)
# print results and calculate p-values
jc.1
2*pnorm(-abs(jc.1[,4]))
jc.2
2*pnorm(-abs(jc.2[,4]))
jc.5
2*pnorm(-abs(jc.5[,4]))
jc.6
2*pnorm(-abs(jc.6[,4]))
jc.8
2*pnorm(-abs(jc.8[,4]))