-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfertility of household heads.r
243 lines (192 loc) · 8.78 KB
/
fertility of household heads.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
##
## Fig 2: Fertility of Mosuo household heads
##
library(AICcmodavg)
library(lme4)
library(MuMIn)
library(tidyverse)
# source("data functions/reproductive success - load data.r")
source("init.r")
####################################################################################
## Data prep
##
mosuo.people.sub = mosuo.people %>%
# keep only adult Mosuo household heads
filter(Age>=15 & EthnicGroup=="Mosuo" & ID %in% mosuo.heads) %>%
# get predictors into correct formats
mutate(income_bin = factor(income01_12),
WealthRank = factor(WealthRank),
zhubo1 = factor(zhubo1),
#TotalHelp_bin = factor(ifelse(TotalHelp==0, 0, 1)),
VillageID = factor(VillageID)) %>%
# keep only relevant variables
dplyr::select(ChildNum, Age, year.of.education, income_bin, livestockno_12, WealthRank, zhubo1, VillageID, Sex)
##
## females
##
mosuo.females = mosuo.people.sub %>%
filter(Sex=="f") %>%
dplyr::select(-Sex) %>%
na.omit()
# head(mosuo.females)
nrow(mosuo.females)
##
## males
##
mosuo.males = mosuo.people.sub %>%
filter(Sex=="m") %>%
dplyr::select(-Sex) %>%
na.omit()
nrow(mosuo.males)
##
## pre-processing
##
# mean-centre ages
mosuo.females$Age.c = as.numeric(scale(mosuo.females$Age))
mosuo.males$Age.c = as.numeric(scale(mosuo.males$Age))
# age^2
mosuo.females$Age2 = mosuo.females$Age.c^2
mosuo.males$Age2 = mosuo.males$Age.c^2
rm(mosuo.people.sub)
#########################################################################################################
## Plot fertility distributions
##
# this function is the same as rethinking::simplehist() but without requiring the user to install the rethinking package...
plot_kids = function(d, title="") plot(table(d$ChildNum), xlab="Number of children", ylab="Count", main=title)
png(file.path(plots.dir, "fertility distributions.png"), height=10, width=20, units="cm", res=300)
par(mfrow=c(1,2))
plot_kids(mosuo.females, "a")
plot_kids(mosuo.males, "b")
dev.off()
pdf(file.path(plots.dir, "fertility distributions.pdf"), height=5, width=10)
par(mfrow=c(1,2))
plot_kids(mosuo.females, "a")
plot_kids(mosuo.males, "b")
dev.off()
par(mfrow=c(1,1)) # reset
####################################################################################
## Should we use a linear or quadratic term for age?
##
m.age.1 = glm(ChildNum ~ Age.c, data=mosuo.females, family="poisson")
m.age.2 = glm(ChildNum ~ Age.c + Age2, data=mosuo.females, family="poisson")
aictab(list(m.age.1, m.age.2), modnames=c("age", "age^2")) # quadratic model fits best (though only has 66% of the weight)
rm(m.age.1, m.age.2)
####################################################################################
## Prepare for model fitting
##
# lists to store all the female (.f) and male (.m) models
m.rs.f = list()
m.rs.m = list()
# names of models
rs_names = c("Null model", "Control", "Control + Zhu")
# rs_names = c("Null model", "Control", "Control + Zhu", "Control + Help", "Control + Help + Zhu")
####################################################################################
## Poisson models for reproductive success - female household heads
##
# null
m.rs.f[[1]] = glmer(ChildNum ~ 1 + (1 | VillageID), family="poisson", data=mosuo.females)
# control (age, age^2, no. sibs, agexsibs, education, wealth)
m.rs.f[[2]] = glmer(ChildNum ~ Age.c + Age2 + year.of.education + income_bin + livestockno_12 + WealthRank + (1 | VillageID), family="poisson", data=mosuo.females)
# control + Zhubo
m.rs.f[[3]] = glmer(ChildNum ~ Age.c + Age2 + year.of.education + income_bin + livestockno_12 + WealthRank + zhubo1 + (1 | VillageID), family="poisson", data=mosuo.females)
# with farm help
# m.rs.f[[4]] = glmer(ChildNum ~ Age.c + Age2 + year.of.education + income_bin + livestockno_12 + WealthRank + TotalHelp_bin + (1 | VillageID), family="poisson", data=mosuo.females)
# m.rs.f[[5]] = glmer(ChildNum ~ Age.c + Age2 + year.of.education + income_bin + livestockno_12 + WealthRank + TotalHelp_bin + zhubo1 + (1 | VillageID), family="poisson", data=mosuo.females)
##
## model selection/averaging
##
best.models = model.sel(m.rs.f)
best.models$Model = rs_names[ as.integer(rownames(best.models))] # add model names in correct order
best.models %>%
dplyr::select(Model, K=df, delta, weight, LL=logLik) %>%
write_csv(file.path(results.dir, "Reproductive success - confidence set - females - household heads.csv"))
# averaging
avg.model = model.avg(best.models, subset = delta < 2, revised.var=T)
avg.model.sum.f = summary(avg.model)$coefficients[2,] %>%
as_data_frame() %>%
rownames_to_column(var="Parameter") %>%
bind_cols(confint(avg.model) %>% as_data_frame())
avg.model.sum.f$Parameter <- c("(Intercept)"
,"Age", "Age^2"
,"Education (years)", "Tourist income", "No. livestock"
,"Wealth rank: 2", "Wealth rank: 3", "Wealth rank: 4", "Wealth rank: 5", "Wealth rank: 6"
,"Zhubo?"
)
####################################################################################
## Poisson models for reproductive success - male household heads
##
# null
m.rs.m[[1]] = glmer(ChildNum ~ 1 + (1 | VillageID), family="poisson", data=mosuo.males,
control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5)))
# control (age, age^2, no. sibs, agexsibs, education, wealth)
m.rs.m[[2]] = glmer(ChildNum ~ Age.c + Age2 + year.of.education + income_bin + livestockno_12 + WealthRank + (1 | VillageID), family="poisson", data=mosuo.males,
control=glmerControl(optCtrl=list(maxfun=2e5)))
# control + Zhubo
m.rs.m[[3]] = glmer(ChildNum ~ Age.c + Age2 + year.of.education + income_bin + livestockno_12 + WealthRank + zhubo1 + (1 | VillageID), family="poisson", data=mosuo.males,
control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5)))
##
## model selection/averaging
##
best.models = model.sel(m.rs.m)
best.models$Model = rs_names[ as.integer(rownames(best.models))] # add model names in correct order
best.models %>%
dplyr::select(Model, K=df, delta, weight, LL=logLik) %>%
write_csv(file.path(results.dir, "Reproductive success - confidence set - males - household heads.csv"))
# averaging
avg.model = model.avg(best.models, subset = delta < 2, revised.var=T)
avg.model.sum.m = summary(avg.model)$coefficients[2,] %>%
as_data_frame() %>%
rownames_to_column(var="Parameter") %>%
bind_cols(confint(avg.model) %>% as_data_frame())
avg.model.sum.m$Parameter <- c("(Intercept)"
,"Age", "Age^2"
,"Education (years)", "Tourist income", "No. livestock"
,"Wealth rank: 2", "Wealth rank: 3", "Wealth rank: 4", "Wealth rank: 5", "Wealth rank: 6"
,"Zhubo?"
)
####################################################################################
## Plot model averaged estimates with CIs
## code modified from: https://github.com/seananderson/lobsters-predators/blob/7f90997b309e52a5f4f7470e20091bdf3b26cba5/r/mod.averaging.lmer.R
##
# pick one or the other of these
#png(filename=file.path(plots.dir, "fig 3.png"), width=200, height=100, units="mm", res=300)
pdf(file=file.path(plots.dir, "fig 3.pdf"), width=7.8, height=3.9)
##
## females
##
par(fig=c(0,0.6,0,1), new=TRUE)
num.params = nrow(avg.model.sum.f)
pch <- c(rep(19, 11), rep(21, 11), cex = 0.8)
par(mar = c(4, 9, 1, 1))
plot(1, 1, type = "n", xlim = c(min(avg.model.sum.f$`2.5 %`, na.rm=T), max(avg.model.sum.f$`97.5 %`, na.rm=T)), ylim = c(1, num.params), axes = FALSE, xlab = "", ylab = "")
with(avg.model.sum.f, points(value, 1:num.params, pch = pch))
with(avg.model.sum.f, segments(`2.5 %`, 1:num.params, `97.5 %`, 1:num.params))
abline(v = 0, lty = 2)
axis(1)
axis(2, at = 1:num.params, labels = avg.model.sum.f$Parameter, las = 1)
mtext("a")
##
## males
##
par(fig=c(0.6,1,0,1), new=TRUE)
num.params = nrow(avg.model.sum.m)
pch <- c(rep(19, 11), rep(21, 11), cex = 0.8)
par(mar = c(4, 1, 1, 1))
plot(1, 1, type = "n", xlim = c(min(avg.model.sum.m$`2.5 %`, na.rm=T), max(avg.model.sum.m$`97.5 %`, na.rm=T)), ylim = c(1, num.params), axes = FALSE, xlab = "", ylab = "")
with(avg.model.sum.m, points(value, 1:num.params, pch = pch))
with(avg.model.sum.m, segments(`2.5 %`, 1:num.params, `97.5 %`, 1:num.params))
abline(v = 0, lty = 2)
axis(1)
mtext("b")
dev.off()
####################################################################################
## Table of varying intercepts' variances for each model
##
bind_cols(
data_frame(Model = rs_names),
data_frame(Females = round(unlist(lapply(m.rs.f, VarCorr)), 3)),
data_frame(Males = round(unlist(lapply(m.rs.m, VarCorr)), 3))
) %>%
write_csv(file.path(results.dir, "Reproductive success - variances of varying intercepts.csv"))
# save models
# save.image("fertility models.rdata")