diff --git a/_blog.yml b/_blog.yml
index 2f91d87772..7bcfa34532 100644
--- a/_blog.yml
+++ b/_blog.yml
@@ -77,16 +77,16 @@
thumbnail: ./assets/10_tf-serving/thumbnail.png
date: January 26, 2021
-- local: ray-rag
- title: "Retrieval Augmented Generation with Huggingface Transformers and Ray"
- thumbnail: ./assets/12_ray_rag/ray_arch_updated.png
- author: amogkam
- guest: true
- date: February 1, 2021
-
- local: pytorch-xla
title: "Hugging Face on PyTorch / XLA TPUs"
thumbnail: ./assets/13_pytorch_xla/pytorch_xla_thumbnail.png
author: jysohn23
guest: true
date: February 9, 2021
+
+# - local: ray-rag
+# title: "Retrieval Augmented Generation with Huggingface Transformers and Ray"
+# thumbnail: ./assets/12_ray_rag/ray_arch_updated.png
+# author: amogkam
+# guest: true
+# date: February 10, 2021
\ No newline at end of file
diff --git a/porting-fsmt.md b/porting-fsmt.md
index 22a3764dee..e7e784eb7c 100644
--- a/porting-fsmt.md
+++ b/porting-fsmt.md
@@ -18,7 +18,7 @@ thumbnail: /blog/assets/07_porting_fsmt/thumbnail.png
stas
Stas Bekman
- guest
+ guest
diff --git a/ray-rag.md b/ray-rag.md
index c3c32bbf8f..0e9c7d20ff 100644
--- a/ray-rag.md
+++ b/ray-rag.md
@@ -1,6 +1,29 @@
-## Retrieval Augmented Generation with Huggingface Transformers and Ray
+---
+title: "Retrieval Augmented Generation with Huggingface Transformers and Ray"
+thumbnail: /blog/assets/12_ray_rag/ray_arch_updated.png
+---
-_[Huggingface Transformers](https://huggingface.co/) recently added the [Retrieval Augmented Generation (RAG)](https://twitter.com/huggingface/status/1310597560906780680) model, a new NLP architecture that leverages external documents (like Wikipedia) to augment its knowledge and achieve state of the art results on knowledge-intensive tasks. In this blog post, we introduce the integration of [Ray](https://docs.ray.io/en/master/), a library for building scalable applications, into the RAG contextual document retrieval mechanism. This speeds up retrieval calls by 2x and improves the scalability of RAG distributed [fine-tuning](https://github.com/huggingface/transformers/tree/master/examples/research_projects/rag)._
+# Retrieval Augmented Generation with Huggingface Transformers and Ray
+
+
+
+
+
+[Huggingface Transformers](https://huggingface.co/) recently added the [Retrieval Augmented Generation (RAG)](https://twitter.com/huggingface/status/1310597560906780680) model, a new NLP architecture that leverages external documents (like Wikipedia) to augment its knowledge and achieve state of the art results on knowledge-intensive tasks. In this blog post, we introduce the integration of [Ray](https://docs.ray.io/en/master/), a library for building scalable applications, into the RAG contextual document retrieval mechanism. This speeds up retrieval calls by 2x and improves the scalability of RAG distributed [fine-tuning](https://github.com/huggingface/transformers/tree/master/examples/research_projects/rag).
@@ -101,7 +124,7 @@ _A performance comparison of different retrieval implementations. For each docum
To try it out, first install the necessary requirements
-```
+```bash
pip install ray
pip install transformers
pip install -r transformers/examples/research_projects/rag/requirements.txt
@@ -111,7 +134,7 @@ pip install -r transformers/examples/research_projects/rag/requirements.txt
Then, you can specify your data paths and other configurations and run [finetune-rag-ray.sh](https://github.com/huggingface/transformers/blob/master/examples/research_projects/rag/finetune_rag_ray.sh)!
-```
+```bash
# Sample script to finetune RAG using Ray for distributed retrieval.
# Add parent directory to python path to access lightning_base.py
diff --git a/ray-tune.md b/ray-tune.md
index 7aaf312202..021f8fb7d6 100644
--- a/ray-tune.md
+++ b/ray-tune.md
@@ -20,7 +20,7 @@ thumbnail: /blog/assets/06_ray_tune/ray-hf.jpg
ray-project
Ray Project (Anyscale)
- guest
+ guest
diff --git a/zero-deepspeed-fairscale.md b/zero-deepspeed-fairscale.md
index 4255251812..615809b56c 100644
--- a/zero-deepspeed-fairscale.md
+++ b/zero-deepspeed-fairscale.md
@@ -18,7 +18,7 @@ thumbnail: /blog/assets/11_zero_deepspeed_fairscale/zero-partitioning.png
stas
Stas Bekman
- guest
+ guest