SUMMARY
Feedback
SUMMARY
Feedback
analysis ¶
Analysis package for stimulus, analysis_default is to be refactored, see git issues.
Modules:
-
analysis_default
–Default analysis module for stimulus package.
Feedback
analysis ¶
Analysis package for stimulus, analysis_default is to be refactored, see git issues.
Modules:
-
analysis_default
–Default analysis module for stimulus package.
Feedback
cli ¶
Command line interface package for the stimulus library.
Modules:
-
analysis_default
–Analysis default module for running model analysis and performance evaluation.
-
check_model
–CLI module for checking model configuration and running initial tests.
-
predict
–CLI module for model prediction on datasets.
-
shuffle_csv
–CLI module for shuffling CSV data files.
-
split_csv
–CLI module for splitting CSV data files.
-
split_yaml
–CLI module for splitting YAML configuration files.
-
transform_csv
–CLI module for transforming CSV data files.
-
tuning
–CLI module for tuning model hyperparameters using Ray Tune.
Feedback
cli ¶
Command line interface package for the stimulus library.
Modules:
-
analysis_default
–Analysis default module for running model analysis and performance evaluation.
-
check_model
–CLI module for checking model configuration and running initial tests.
-
predict
–CLI module for model prediction on datasets.
-
shuffle_csv
–CLI module for shuffling CSV data files.
-
split_csv
–CLI module for splitting CSV data files.
-
split_yaml
–CLI module for splitting YAML configuration files.
-
transform_csv
–CLI module for transforming CSV data files.
-
tuning
–CLI module for tuning model hyperparameters using Ray Tune.
Feedback
encoding ¶
Feedback
encoding ¶
Feedback
data ¶
Data handling and processing module.
This module provides functionality for loading, transforming, and managing data in various formats like CSV. It includes classes and utilities for:
- Loading and processing CSV data files
- Applying data transformations and augmentations
- Splitting data into train/validation/test sets
- Converting data into PyTorch datasets
Modules:
-
csv
–This module provides classes for handling CSV data files in the STIMULUS format.
-
encoding
– -
experiments
–Loaders serve as interfaces between the CSV master class and custom methods.
-
handlertorch
–This file provides the class API for handling the data in pytorch using the Dataset and Dataloader classes.
-
splitters
–This package provides splitter classes for splitting data into train, validation, and test sets.
-
transform
–
Feedback
data ¶
Data handling and processing module.
This module provides functionality for loading, transforming, and managing data in various formats like CSV. It includes classes and utilities for:
- Loading and processing CSV data files
- Applying data transformations and augmentations
- Splitting data into train/validation/test sets
- Converting data into PyTorch datasets
Modules:
-
csv
–This module provides classes for handling CSV data files in the STIMULUS format.
-
encoding
– -
experiments
–Loaders serve as interfaces between the CSV master class and custom methods.
-
handlertorch
–This file provides the class API for handling the data in pytorch using the Dataset and Dataloader classes.
-
splitters
–This package provides splitter classes for splitting data into train, validation, and test sets.
-
transform
–
Feedback
splitters ¶
This package provides splitter classes for splitting data into train, validation, and test sets.
Modules:
-
splitters
–This file contains the splitter classes for splitting data accordingly.
Feedback
splitters ¶
This package provides splitter classes for splitting data into train, validation, and test sets.
Modules:
-
splitters
–This file contains the splitter classes for splitting data accordingly.
Feedback
transform ¶
Modules:
-
data_transformation_generators
–This file contains noise generators classes for generating various types of noise.
Feedback
transform ¶
Modules:
-
data_transformation_generators
–This file contains noise generators classes for generating various types of noise.
Feedback
stimulus ¶
Feedback
stimulus ¶
Feedback
learner ¶
Modules:
-
predict
–A module for making predictions with PyTorch models using DataLoaders.
-
raytune_learner
–Ray Tune wrapper and trainable model classes for hyperparameter optimization.
-
raytune_parser
–
Feedback
learner ¶
Modules:
-
predict
–A module for making predictions with PyTorch models using DataLoaders.
-
raytune_learner
–Ray Tune wrapper and trainable model classes for hyperparameter optimization.
-
raytune_parser
–