-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataloader_transform.py
233 lines (180 loc) · 8.46 KB
/
dataloader_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
from torch.utils.data import TensorDataset, DataLoader
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import numpy as np
import argparse
import os
import random
import pickle
from imgclass import Images
from imgclass import SummaryInfo
"""
image = Images(dir)
image.language : language, str
image.char : character, str
image.drawer : drawer, int
image.get_info : store image information, image.get_info(language,char,drawer)
image.get_image : get image tensor (1*105*105), image.get_image(transform)
info = SummaryInfo(dir)
info.background : background language list
info.evaluation : evaluation language list
info.char : language's character list, dict
"""
def drawer_separation() :
drawer = [i for i in range(1,21)]
random.shuffle(drawer)
drawer_train = drawer[:12]
drawer_valid = drawer[12:16]
drawer_test = drawer[16:]
return drawer_train, drawer_valid, drawer_test
def eval_separation() :
info = SummaryInfo()
eval_list = info.evaluation
random.shuffle(eval_list)
valid_lgg = eval_list[:10]
test_lgg = eval_list[10:]
return valid_lgg, test_lgg
def preprocess_train(drawer_train, dir_name='./Siamese-Networks-for-One-Shot-Learning/Omniglot Dataset', num=30000) :
info = SummaryInfo()
# 30,000 pairs - 15,000 true, 15,000 false
pairs = []
for i in range(int(num/2)) :
language = random.choice(info.background)
char = random.choice(info.char[language])
drawer1, drawer2 = np.random.choice(drawer_train, 2, replace=False)
pairs.append([language, language, char, char, drawer1, drawer2])
for i in range(int(num/6)) :
language = random.choice(info.background)
char1 = random.choice(info.char[language])
char2 = random.choice(info.char[language])
while char2 == char1 :
char2 = random.choice(info.char[language])
assert char1 != char2
drawer1, drawer2 = np.random.choice(drawer_train, 2)
pairs.append([language, language, char1, char2, drawer1, drawer2])
for i in range(int(num/3)) :
language1 = random.choice(info.background)
language2 = random.choice(info.background)
while language2 == language1 :
language2 = random.choice(info.background)
char1 = random.choice(info.char[language1])
char2 = random.choice(info.char[language2])
drawer1, drawer2 = np.random.choice(drawer_train, 2)
pairs.append([language1, language2, char1, char2, drawer1, drawer2])
random.shuffle(pairs)
images = []
labels = []
for elem in pairs :
# elem = [language1, language2, char1, char2, drawer1, drawer2]
if elem[0] == elem[1] and elem[2] == elem[3] :
labels.append(torch.FloatTensor([1.]))
else :
labels.append(torch.FloatTensor([0.]))
img1 = Images('background')
img2 = Images('background')
img1.get_info(elem[0], elem[2], elem[4])
img2.get_info(elem[1], elem[3], elem[5])
# You can define your own transformations on this part
# custom transformation
#temp1 = img1.get_image()
#temp2 = img2.get_image()
transform = transforms.Compose([
transforms.RandomResizedCrop(105, scale=(0.5,1.5)),
transforms.Grayscale(),
transforms.ToTensor()
])
temp1 = img1.get_image(transform)
temp2 = img2.get_image(transform)
assert temp1.shape == temp2.shape
shapes = [1]
shapes.extend(list(temp1.shape))
images.append(torch.cat([temp1.view(shapes),temp2.view(shapes)],1))
train_images = torch.cat(images)
train_labels = torch.cat(labels)
return train_images, train_labels, pairs
def preprocess_eval(drawer_evaltype, lgg_list, dir_name='./Siamese-Networks-for-One-Shot-Learning/Omniglot Dataset', num=400) :
info = SummaryInfo()
# 20 pairs
pairs = []
for i in range(num) :
language = random.choice(lgg_list)
char_list = np.random.choice(info.char[language],20,replace=False)
char_true = np.random.choice(char_list)
drawer1, drawer2 = np.random.choice(drawer_evaltype, 2, replace=False)
pair = [[language, language, char_true, char, drawer1, drawer2] for char in char_list]
pairs.append(pair)
random.shuffle(pairs)
images = []
labels = []
for sets in pairs :
for elem in sets :
label = []
image = []
if elem[0] == elem[1] and elem[2] == elem[3] :
label.append(torch.FloatTensor([1.]))
else :
label.append(torch.FloatTensor([0.]))
img1 = Images('evaluation')
img2 = Images('evaluation')
img1.get_info(elem[0], elem[2], elem[4])
img2.get_info(elem[1], elem[3], elem[5])
# You can define your own trasnformations on this part
temp1 = img1.get_image()
temp2 = img2.get_image()
shapes = [1]
shapes.extend(list(temp1.shape))
image.append(torch.cat([temp1.view(shapes), temp2.view(shapes)],1))
labels.append(torch.cat(label))
images.append(torch.cat(image))
eval_labels = torch.cat(labels)
eval_images = torch.cat(images)
return eval_images, eval_labels, pairs
def check_preprocess(dir_name = './Siamese-Networks-for-One-Shot-Learning/Omniglot Dataset', train_num=30000, eval_num=400) :
drawer_train, drawer_valid, drawer_test = drawer_separation()
valid_list, test_list = eval_separation()
train_images, train_labels, train_pairs = preprocess_train(drawer_train, dir_name, train_num)
for i, elem in enumerate(train_pairs) :
if elem[0] == elem[1] and elem[2] == elem[3] :
assert elem[4] != elem[5], "Preprocess Error - Same images sampled."
assert int(train_labels[i]) != 0, "Preprocess Error - Wrong labeled sample observed(true 1, labeled 0)."
else :
assert int(train_labels[i]) == 0, "Preprocess Error - Wrong labeled sample observed(true 0, labeled 1)."
valid_images, valid_labels, valid_pairs = preprocess_eval(drawer_valid, valid_list, dir_name, eval_num)
assert valid_images.size(0) == 8000, "Preprocess Error - Wrong counts."
test_images, test_labels, test_pairs = preprocess_eval(drawer_test, test_list, dir_name, eval_num)
assert test_images.size(0) == 8000, "Preprocess Error - Wrong counts."
return train_images, train_labels, valid_images, valid_labels, test_images, test_labels
def preprocess(dir_name='./Siamese-Networks-for-One-Shot-Learning/Omniglot Dataset', train_num=30000, eval_num=400) :
train_images, train_labels, valid_images, valid_labels, test_images, test_labels = check_preprocess(dir_name, train_num, eval_num)
train_dataset = TensorDataset(train_images, train_labels)
valid_dataset = TensorDataset(valid_images, valid_labels)
test_dataset = TensorDataset(test_images, test_labels)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=False, drop_last=True)
valid_loader = DataLoader(valid_dataset, batch_size=20, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=20, shuffle=False)
return train_loader, valid_loader, test_loader
def save_loader(save_name=None, dir_name='./Siamese-Networks-for-One-Shot-Learning/Omniglot Dataset', train_num=30000, eval_num=400) :
train_loader, valid_loader, test_loader = preprocess(dir_name, train_num, eval_num)
if save_name :
with open('./data/train_loader_'+save_name+'.pkl','wb') as f :
pickle.dump(train_loader,f)
with open('./data/valid_loader_'+save_name+'.pkl','wb') as f :
pickle.dump(valid_loader,f)
with open('./data/test_loader_'+save_name+'.pkl','wb') as f :
pickle.dump(test_loader,f)
else :
with open('./data/train_loader.pkl','wb') as f :
pickle.dump(train_loader,f)
with open('./data/valid_loader.pkl','wb') as f :
pickle.dump(valid_loader,f)
with open('./data/test_loader.pkl','wb') as f :
pickle.dump(test_loader,f)
if __name__ == "__main__" :
parser = argparse.ArgumentParser()
parser.add_argument('--dir', type=str,
default = './Siamese-Networks-for-One-Shot-Learning/Omniglot Dataset',
help = 'directory of image files')
args = parser.parse_args()
save_loader(save_name = 'transform', dir_name = args.dir)