|
1 |
| -export default getCoprimes; |
2 |
| -function getCoprimes(nums: number[], edges: number[][]): number[] { |
3 |
| - const edge = Array(nums.length) |
4 |
| - .fill(0) |
5 |
| - .map(() => Array<number>()); |
6 |
| - for (const [a, b] of edges) { |
7 |
| - edge[a].push(b); |
8 |
| - edge[b].push(a); |
9 |
| - } |
10 |
| - |
11 |
| - if (prime.length === 0) { |
12 |
| - for (const i of Array(51).keys()) { |
13 |
| - prime[i] = Array(51).fill(false); |
14 |
| - } |
15 |
| - |
16 |
| - for (const i of Array(51).keys()) |
17 |
| - for (let j = i; j < 51; j++) { |
18 |
| - prime[i][j] = prime[j][i] = greatestCommonDivisor(i, j) === 1; |
19 |
| - } |
20 |
| - } |
21 |
| - |
22 |
| - const visited = new Set<number>(); |
23 |
| - function dfs(node: number, ancestors: number[]) { |
24 |
| - if (!visited.has(node)) { |
25 |
| - visited.add(node); |
26 |
| - |
27 |
| - if (ancestors.length) { |
28 |
| - for (let i = ancestors.length - 1; i >= 0; i--) { |
29 |
| - if (prime[nums[node]][nums[ancestors[i]]]) { |
30 |
| - results[node] = ancestors[i]; |
31 |
| - break; |
32 |
| - } |
33 |
| - } |
34 |
| - } |
35 |
| - for (const child of edge[node]) { |
36 |
| - ancestors.push(node); |
37 |
| - dfs(child, ancestors); |
38 |
| - ancestors.pop(); |
39 |
| - } |
40 |
| - } |
41 |
| - } |
42 |
| - const results: number[] = Array(nums.length).fill(-1); |
43 |
| - dfs(0, []); |
44 |
| - return results; |
45 |
| -} |
46 |
| - |
47 |
| -const prime: boolean[][] = []; |
48 |
| - |
49 |
| -function greatestCommonDivisor(a: number, b: number): number { |
50 |
| - return b != 0 ? greatestCommonDivisor(b, a % b) : a; |
51 |
| -} |
| 1 | +import { greatestCommonDivisor } from "../max-points-on-a-line/greatest_common_divisor.ts"; |
| 2 | + |
| 3 | +export default getCoprimes; |
| 4 | +function getCoprimes(nums: number[], edges: number[][]): number[] { |
| 5 | + const edge = Array(nums.length) |
| 6 | + .fill(0) |
| 7 | + .map(() => Array<number>()); |
| 8 | + for (const [a, b] of edges) { |
| 9 | + edge[a].push(b); |
| 10 | + edge[b].push(a); |
| 11 | + } |
| 12 | + |
| 13 | + if (prime.length === 0) { |
| 14 | + for (const i of Array(51).keys()) { |
| 15 | + prime[i] = Array(51).fill(false); |
| 16 | + } |
| 17 | + |
| 18 | + for (const i of Array(51).keys()) { |
| 19 | + for (let j = i; j < 51; j++) { |
| 20 | + prime[i][j] = prime[j][i] = greatestCommonDivisor(i, j) === 1; |
| 21 | + } |
| 22 | + } |
| 23 | + } |
| 24 | + |
| 25 | + const visited = new Set<number>(); |
| 26 | + const currents: [number, number][][] = Array(51) |
| 27 | + .fill(0) |
| 28 | + .map(() => []); |
| 29 | + function dfs(node: number, depth: number) { |
| 30 | + if (visited.has(node)) { |
| 31 | + return; |
| 32 | + } |
| 33 | + visited.add(node); |
| 34 | + const value = nums[node]; |
| 35 | + |
| 36 | + let ans = [-1, -1]; |
| 37 | + for (const i of Array(51).keys()) { |
| 38 | + if (currents[i].length && prime[value][i]) { |
| 39 | + const get = currents[i].at(-1) as [number, number]; |
| 40 | + |
| 41 | + if (get[1] > ans[1]) { |
| 42 | + ans = get; |
| 43 | + } |
| 44 | + } |
| 45 | + } |
| 46 | + results[node] = ans[0]; |
| 47 | + for (const child of edge[node]) { |
| 48 | + currents[value].push([node, depth]); |
| 49 | + dfs(child, depth + 1); |
| 50 | + currents[value].pop(); |
| 51 | + } |
| 52 | + } |
| 53 | + const results: number[] = Array(nums.length).fill(-1); |
| 54 | + dfs(0, 0); |
| 55 | + return results; |
| 56 | +} |
| 57 | + |
| 58 | +const prime: boolean[][] = []; |
0 commit comments