-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsegmentation_train.py
114 lines (102 loc) · 3.42 KB
/
segmentation_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""
Train a diffusion model on images.
"""
import sys
import numpy as np
import argparse
#import torchsummary as summary
#from pytorch_model_summary import summary
sys.path.append("")
sys.path.append("scripts")
from guided_diffusion import dist_util, logger
from guided_diffusion.resample import create_named_schedule_sampler
#from guided_diffusion.bratsloader import BRATSDataset
from guided_diffusion.shaprloader import SHAPRDataset
from guided_diffusion.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
import torch as th
from guided_diffusion.train_util import TrainLoop
#from visdom import Visdom
#viz = Visdom(port=8850)
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
logger.log("creating model and diffusion...")
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print(params)
model.to(dist_util.dev())
#print(model)
#print(summary(model, input_size=(1, 2, 64, 64, 64)))
#print(summary(model(th.zeros((1, 2, 64, 64, 64)), th.tensor([200,250,300,350]))))
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion, maxt=1000)
logger.log("creating data loader...")
#ds = BRATSDataset(args.data_dir, test_flag=False)
ds = SHAPRDataset(args.data_dir, test_flag=False)
datal= th.utils.data.DataLoader(
ds,
batch_size=args.batch_size,
shuffle=True)
data = iter(datal)
logger.log("training...")
TrainLoop(
model=model,
diffusion=diffusion,
classifier=None,
data=data,
dataloader=datal,
batch_size=args.batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
log_interval=args.log_interval,
save_interval=args.save_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
).run_loop()
def create_argparser():
defaults = dict(
data_dir="/home/dominik/Documents/SHAPR_diffusion/data_SHAPR/",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=4,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=100,
save_interval=5000,
resume_checkpoint='',#'"./results/pretrainedmodel.pt",
use_fp16=True,
fp16_scale_growth=1e-3,
learn_sigma = True,
class_cond = False,
num_res_blocks = 1, #2,
num_heads = 1,
use_scale_shift_norm = False,
rescale_learned_sigmas = True,
attention_resolutions = 16, #16,
diffusion_steps = 1000,
image_size = 64,
num_channels = 32,
noise_schedule = "linear",
rescale_timesteps = False
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()