forked from RahelehSalehi/AE-CFE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFeatureExtraction.py
130 lines (105 loc) · 3.3 KB
/
FeatureExtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import os
from tqdm import tqdm
from Dataloader import DataLoader
import torch.nn as nn
import pickle
import gzip
import sys
import torch
file = "AE_CFE.dat"
model_name = "AE_GB_MMD20220227-003348.mdl"
equivalent_classes = {
#Acevedo-20 dataset
'basophil': 'basophil',
'eosinophil': 'eosinophil',
'erythroblast': 'erythroblast',
'IG': "unknown", #immature granulocytes,
'PMY': 'promyelocyte', #immature granulocytes,
'MY': 'myelocyte', #immature granulocytes,
'MMY': 'metamyelocyte', #immature granulocytes,
'lymphocyte': 'lymphocyte_typical',
'monocyte': 'monocyte',
'NEUTROPHIL': "unknown",
'BNE': 'neutrophil_banded',
'SNE': 'neutrophil_segmented',
'platelet': "unknown",
#Matek-19 dataset
'BAS': 'basophil',
'EBO': 'erythroblast',
'EOS': 'eosinophil',
'KSC': 'smudge_cell',
'LYA': 'lymphocyte_atypical',
'LYT': 'lymphocyte_typical',
'MMZ': 'metamyelocyte',
'MOB': 'monocyte', #monoblast
'MON': 'monocyte',
'MYB': 'myelocyte',
'MYO': 'myeloblast',
'NGB': 'neutrophil_banded',
'NGS': 'neutrophil_segmented',
'PMB': "unknown",
'PMO': 'promyelocyte',
#INT-20 dataset
'01-NORMO': 'erythroblast',
'04-LGL': "unknown", #atypical
'05-MONO': 'monocyte',
'08-LYMPH-neo': 'lymphocyte_atypical',
'09-BASO': 'basophil',
'10-EOS': 'eosinophil',
'11-STAB': 'neutrophil_banded',
'12-LYMPH-reaktiv': 'lymphocyte_atypical',
'13-MYBL': 'myeloblast',
'14-LYMPH-typ': 'lymphocyte_typical',
'15-SEG': 'neutrophil_segmented',
'16-PLZ': "unknown",
'17-Kernschatten': 'smudge_cell',
'18-PMYEL': 'promyelocyte',
'19-MYEL': 'myelocyte',
'20-Meta': 'metamyelocyte',
'21-Haarzelle': "unknown",
'22-Atyp-PMYEL': "unknown",
}
label_map = {
'basophil': 0,
'eosinophil': 1,
'erythroblast': 2,
'myeloblast' : 3,
'promyelocyte': 4,
'myelocyte': 5,
'metamyelocyte': 6,
'neutrophil_banded': 7,
'neutrophil_segmented': 8,
'monocyte': 9,
'lymphocyte_typical': 10,
'lymphocyte_atypical': 11,
'smudge_cell': 12,
}
ngpu = torch.cuda.device_count()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model= torch.load(os.path.join("Model/",model_name ), torch.device('cpu'))
model.eval()
if ngpu > 1:
encoder_model = nn.DataParallel(model)
model = model.to(device)
else:
model = model.to(device)
torch.cuda.empty_cache()
## Load the dataset
dataset = DataLoader()
traindataloader = torch.utils.data.DataLoader(dataset, batch_size=max(20 * ngpu,2), shuffle=True) ##32
features =[]
for (feat, scimg, label, db,key) in tqdm(traindataloader, desc='images'):
feat = feat.squeeze()
feat = feat.float()
feat = feat.to(device)
z, _, _ = model(feat)
z = z.cpu().detach().numpy()
datasets_names = ["Matek-19", "INT-20","Acevedo-20"]
for i in range(len(z)):
features.append({"z": z[i], "label": label_map[equivalent_classes[label[i]]], "dataset": db[i].cpu().detach().numpy().argmax(),"key":key})
print("saving...")
if os.path.exists(os.path.join('Features_Files/')) is False:
os.makedirs(os.path.join('Features_Files/'))
with gzip.open(os.path.join('Features_Files/', file), "wb") as f:
pickle.dump([features], f)