diff --git a/pyemma/coordinates/api.py b/pyemma/coordinates/api.py index b9557b23a..091c5b937 100644 --- a/pyemma/coordinates/api.py +++ b/pyemma/coordinates/api.py @@ -1020,7 +1020,7 @@ def tica(data=None, lag=10, dim=-1, var_cutoff=0.95, kinetic_map=True, stride=1, dimensions (see epsilon) will be used, unless set by dim. Setting var_cutoff smaller than 1.0 is exclusive with dim - kinetic_map : bool, optional, default False + kinetic_map : bool, optional, default True Eigenvectors will be scaled by eigenvalues. As a result, Euclidean distances in the transformed data approximate kinetic distances [4]_. This is a good choice when the data is further processed by clustering.