diff --git a/README.Rmd b/README.Rmd index a379951..636f9b1 100644 --- a/README.Rmd +++ b/README.Rmd @@ -94,7 +94,7 @@ p
-```{r courses_grouped_bar_chart, fig.height=3.3, out.width = "100%", echo = FALSE, fig.alt="Courses grouped bar chart"} +```{r courses_grouped_bar_chart, fig.height=3.3, out.width = "80%", echo = FALSE, fig.alt="Courses grouped bar chart"} knitr::include_graphics("./man/figures/articles/courses_grouped_bar_chart.svg") ``` @@ -191,7 +191,7 @@ p
-```{r courses_stacked_bar_chart, fig.height=5.6, out.width = "100%", echo = FALSE, fig.alt="Courses stacked bar chart"} +```{r courses_stacked_bar_chart, fig.height=5.6, out.width = "80%", echo = FALSE, fig.alt="Courses stacked bar chart"} knitr::include_graphics("./man/figures/articles/courses_stacked_bar_chart.svg") ``` @@ -270,7 +270,7 @@ new_items_F <- get_responses(n = nrow(items_F), To compare the results, we can plot the correlation matrix with bar charts on the diagonal: -```{r agree_items_correlations_comparison, fig.height=10, out.width = "100%", echo = FALSE, fig.alt="Agreeableness items correlations comparison"} +```{r agree_items_correlations_comparison, fig.height=10, out.width = "80%", echo = FALSE, fig.alt="Agreeableness items correlations comparison"} knitr::include_graphics("./man/figures/articles/agree_items_correlations_comparison.svg") ``` @@ -312,7 +312,7 @@ plot_grid(p1, p2, nrow = 2)
-```{r agreeableness_grouped_boxplot, fig.height=4.8, out.width = "100%", echo = FALSE, fig.alt="Agreeableness items grouped boxplot"} +```{r agreeableness_grouped_boxplot, fig.height=4.8, out.width = "80%", echo = FALSE, fig.alt="Agreeableness items grouped boxplot"} knitr::include_graphics("./man/figures/articles/agreeableness_grouped_boxplot.svg") ``` diff --git a/README.md b/README.md index 56358ea..48bfefa 100644 --- a/README.md +++ b/README.md @@ -110,7 +110,7 @@ p
-
-
-
Finally, let’s also run Welch’s t-test to test if men and women differ on agreeableness using both data sets:
diff --git a/docs/articles/simulating_survey_data.html b/docs/articles/simulating_survey_data.html index 00c211e..afb8ebf 100644 --- a/docs/articles/simulating_survey_data.html +++ b/docs/articles/simulating_survey_data.html @@ -270,8 +270,9 @@Comparison of introductor legend.title = element_blank(), plot.title = element_text(size=16)) -ggsave(file="./man/figures/articles/courses_grouped_bar_chart.svg", plot=p, width=10, height=3.3)
-
For a pre- and post comparison, suppose that the participants completed the survey both before and after taking the course. And suppose that participants’ assessments of their skills in:
-
To compare the results, we can plot the correlation matrix with bar charts on the diagonal:
-@@ -517,7 +517,7 @@Replicating survey dataplot_grid(p1, p2, nrow = 2)
-
survey responses, where the columns correspond to individual items. +
responses, where the columns correspond to individual items. Apart from this, `data` can be of almost any class such as "data.frame" "matrix" or "array".
Generates a sample of random responses based on parameters of latent variables.
+Returns a sample of random responses based on parameters of latent variables.
get_pk_mean()
Calculate the mean of `pk`
Calculate variance of probabilities `pk`