diff --git a/README.Rmd b/README.Rmd index 2778ce9..0aaaee0 100644 --- a/README.Rmd +++ b/README.Rmd @@ -19,6 +19,7 @@ knitr::opts_chunk$set( [![R-CMD-check](https://github.com/markolalovic/latent2likert/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/markolalovic/latent2likert/actions/workflows/R-CMD-check.yaml) [![codecov](https://codecov.io/gh/markolalovic/latent2likert/branch/main/graph/badge.svg?token=HZTG6RUB2J)](https://app.codecov.io/gh/markolalovic/latent2likert) [![CRAN status](https://www.r-pkg.org/badges/version/latent2likert)](https://CRAN.R-project.org/package=latent2likert) +[![downloads](https://cranlogs.r-pkg.org/badges/latent2likert)](https://cranlogs.r-pkg.org/badges/latent2likert) ## Overview diff --git a/README.html b/README.html index 68b5eb5..5937853 100644 --- a/README.html +++ b/README.html @@ -607,7 +607,7 @@
rlikert
To generate responses to multiple items with specified parameters:
rlikert(size = 10,
@@ -669,16 +669,16 @@ Using rlikert
sd = c(0.8, 1, 1),
corr = 0.5)
#> Y1 Y2 Y3
-#> [1,] 3 2 4
-#> [2,] 2 1 1
-#> [3,] 2 1 2
-#> [4,] 3 2 4
-#> [5,] 2 2 4
-#> [6,] 2 3 5
-#> [7,] 3 1 2
-#> [8,] 2 2 3
-#> [9,] 2 3 5
-#> [10,] 3 2 5
You can also provide a correlation matrix:
corr <- matrix(c(1.00, -0.63, -0.39,
-0.63, 1.00, 0.41,
@@ -694,17 +694,17 @@ Using rlikert
and these estimates are typically lower:
cor(data)
#> Y1 Y2 Y3
-#> Y1 1.0000000 -0.5223151 -0.3449648
-#> Y2 -0.5223151 1.0000000 0.3398699
-#> Y3 -0.3449648 0.3398699 1.0000000
+#> Y1 1.0000000 -0.5774145 -0.3838274
+#> Y2 -0.5774145 1.0000000 0.3856997
+#> Y3 -0.3838274 0.3856997 1.0000000
estimate_params
Given the data, you can estimate the values of latent parameters using:
estimate_params(data, n_levels = c(4, 5, 6), skew = 0)
#> items
-#> estimates Y1 Y2 Y3
-#> mean 0.006261483 -0.952847125 -0.011843866
-#> sd 0.745185144 1.012219189 0.954714824
To visualize the transformation, you can use
plot_likert_transform()
. It plots the densities of latent
diff --git a/README.md b/README.md
index 86a77a0..8b32058 100644
--- a/README.md
+++ b/README.md
@@ -9,6 +9,7 @@
[![codecov](https://codecov.io/gh/markolalovic/latent2likert/branch/main/graph/badge.svg?token=HZTG6RUB2J)](https://app.codecov.io/gh/markolalovic/latent2likert)
[![CRAN
status](https://www.r-pkg.org/badges/version/latent2likert)](https://CRAN.R-project.org/package=latent2likert)
+[![downloads](https://cranlogs.r-pkg.org/badges/latent2likert)](https://cranlogs.r-pkg.org/badges/latent2likert)
## Overview
@@ -76,7 +77,7 @@ scale, use:
``` r
library(latent2likert)
rlikert(size = 10, n_items = 1, n_levels = 5)
-#> [1] 4 4 2 3 5 2 4 2 3 3
+#> [1] 1 3 3 3 2 4 1 3 3 1
```
To generate responses to multiple items with specified parameters:
@@ -89,16 +90,16 @@ rlikert(size = 10,
sd = c(0.8, 1, 1),
corr = 0.5)
#> Y1 Y2 Y3
-#> [1,] 3 2 4
-#> [2,] 2 1 1
-#> [3,] 2 1 2
-#> [4,] 3 2 4
-#> [5,] 2 2 4
-#> [6,] 2 3 5
-#> [7,] 3 1 2
-#> [8,] 2 2 3
-#> [9,] 2 3 5
-#> [10,] 3 2 5
+#> [1,] 2 1 3
+#> [2,] 2 2 2
+#> [3,] 4 3 2
+#> [4,] 3 3 4
+#> [5,] 4 5 6
+#> [6,] 2 1 4
+#> [7,] 1 2 3
+#> [8,] 3 1 6
+#> [9,] 3 3 4
+#> [10,] 3 2 6
```
You can also provide a correlation matrix:
@@ -122,9 +123,9 @@ these estimates are typically lower:
``` r
cor(data)
#> Y1 Y2 Y3
-#> Y1 1.0000000 -0.5223151 -0.3449648
-#> Y2 -0.5223151 1.0000000 0.3398699
-#> Y3 -0.3449648 0.3398699 1.0000000
+#> Y1 1.0000000 -0.5774145 -0.3838274
+#> Y2 -0.5774145 1.0000000 0.3856997
+#> Y3 -0.3838274 0.3856997 1.0000000
```
## Using `estimate_params`
@@ -134,9 +135,9 @@ Given the data, you can estimate the values of latent parameters using:
``` r
estimate_params(data, n_levels = c(4, 5, 6), skew = 0)
#> items
-#> estimates Y1 Y2 Y3
-#> mean 0.006261483 -0.952847125 -0.011843866
-#> sd 0.745185144 1.012219189 0.954714824
+#> estimates Y1 Y2 Y3
+#> mean -0.0526979746 -0.9696916596 -0.0009229545
+#> sd 0.8163184862 1.0533629380 1.0381389630
```
## Transformation