-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict_ensemble.py
226 lines (173 loc) · 7.75 KB
/
predict_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import json
import random
import numpy as np
from collections import defaultdict
from math import ceil
from random import sample
from sklearn.linear_model import LogisticRegression
from typing import Dict, List
from sklearn.metrics import f1_score
from sklearn.model_selection import GridSearchCV
from tqdm import tqdm
random.seed(42)
def collect_predictions(all_predictions, pad=False):
collected_predictions = {}
for predictions in all_predictions:
for id_, preds in predictions.items():
if id_ not in collected_predictions:
collected_predictions[id_] = defaultdict(list)
for concept, value in preds.items():
collected_predictions[id_][concept].append(value)
return collected_predictions
def predict_ensemble_mean(all_predictions: List[Dict[str, Dict[str, float]]]):
collected_predictions = collect_predictions(all_predictions)
final_predictions = dict()
for id_, preds in collected_predictions.items():
final_predictions[id_] = list()
for concept, values in preds.items():
if "NoLabel" in concept:
continue
if np.mean(values) > 0.5:
final_predictions[id_].append(concept)
return final_predictions
def predict_ensemble_clf(test_predictions: List[Dict[str, Dict[str, float]]],
dev_predictions: List[Dict[str, Dict[str, float]]],
true_labels: Dict[str, List[str]]):
assert len(test_predictions) == len(dev_predictions)
n_models = len(test_predictions)
dev_predictions = collect_predictions(dev_predictions)
instances_dict = {}
for id_, preds in dev_predictions.items():
gold_labels = true_labels.get(id_, [])
pos_instances = []
neg_instances = []
for concept, values in preds.items():
assert len(values) == n_models
if concept in gold_labels:
pos_instances.append(values)
else:
neg_instances.append(values)
instances_dict[id_] = (pos_instances, neg_instances)
print(f"Found {len(instances_dict)} instances in total")
num_val_instances = ceil(len(instances_dict) * 0.25)
val_instances = sample(instances_dict.items(), num_val_instances)
#val_instances = instances_dict.items()
X_val = []
y_val = []
print(f"Building {len(val_instances)} validation instances")
for (id, (pos_instances, neg_instances)) in val_instances:
for pos_instance in pos_instances:
X_val.append(pos_instance)
y_val.append(1)
for neg_instance in neg_instances:
X_val.append(neg_instance)
y_val.append(0)
instances_dict.pop(id)
print(f"Using {len(instances_dict)} instances for training")
max_f1 = 0
best_clf = None
best_size = 0
neg_sample_sizes = [30, 35, 40]
for neg_sample_size in tqdm(neg_sample_sizes, total=len(neg_sample_sizes)):
X_train = []
y_train = []
for (_, (pos_instances, neg_instances)) in instances_dict.items():
for instance in pos_instances:
X_train.append(instance)
y_train.append(1)
for instance in sample(neg_instances, neg_sample_size):
X_train.append(instance)
y_train.append(0)
parameter_grid = {"C": [2 ** i for i in range(-5, 17, 2)]}
grid_search = GridSearchCV(LogisticRegression(penalty="l2", solver="lbfgs", max_iter=100000, n_jobs=4),
parameter_grid, scoring="f1", n_jobs=16, cv=5, verbose=100)
clf = grid_search.fit(X_train, y_train)
y_pred = clf.predict(X_val)
f1 = f1_score(y_val, y_pred)
if f1 > max_f1:
print(f"Found new best f1 {f1} with C={clf.best_params_['C']} and neg_sample_size={neg_sample_size}")
max_f1 = f1
best_clf = clf
best_size = neg_sample_size
print(f"Found best f1 of {max_f1} with C={best_clf.best_params_['C']} and neg_sample_size={best_size}")
print("Start prediction 1")
test_predictions = collect_predictions(test_predictions)
final_predictions = dict()
for id_, preds in tqdm(test_predictions.items(), total=len(test_predictions)):
final_predictions[id_] = list()
for concept, values in preds.items():
assert len(values) == n_models
if "NoLabel" in concept:
continue
if best_clf.predict([values]).squeeze():
final_predictions[id_].append(concept)
X_train = []
y_train = []
print(f"Building full training set")
for (_, (pos_instances, neg_instances)) in val_instances:
for pos_instance in pos_instances:
X_train.append(pos_instance)
y_train.append(1)
for neg_instance in sample(neg_instances, best_size):
X_train.append(neg_instance)
y_train.append(0)
for (_, (pos_instances, neg_instances)) in instances_dict.items():
for pos_instance in pos_instances:
X_train.append(pos_instance)
y_train.append(1)
for neg_instance in sample(neg_instances, best_size):
X_train.append(neg_instance)
y_train.append(0)
best_clf = LogisticRegression(C=best_clf.best_params_["C"], penalty="l2", solver="lbfgs", max_iter=100000, n_jobs=4)
best_clf.fit(X_train, y_train)
print("Start prediction 2")
#test_predictions = collect_predictions(test_predictions)
final_predictions2 = dict()
for id_, preds in tqdm(test_predictions.items(), total=len(test_predictions)):
final_predictions2[id_] = list()
for concept, values in preds.items():
assert len(values) == n_models
if "NoLabel" in concept:
continue
if best_clf.predict([values]).squeeze():
final_predictions2[id_].append(concept)
return final_predictions, final_predictions2
if __name__ == '__main__':
parser = argparse.ArgumentParser("""Compute ensemble predictions.
dev_predictions and test_predictions have to be in the same order.
all prediction files have to contain predictions for all concepts and for all document ids.
""")
parser.add_argument('--dev_predictions', nargs='+')
parser.add_argument('--test_predictions', nargs='+')
parser.add_argument('--anns', required=True)
parser.add_argument('--method', required=True, choices=['clf', 'mean'])
parser.add_argument('--output', required=True)
args = parser.parse_args()
test_predictions = [json.load(open(pred)) for pred in args.test_predictions]
if args.method == 'mean':
ensemble_preds = predict_ensemble_mean(test_predictions)
elif args.method == 'clf':
dev_predictions = [json.load(open(pred)) for pred in args.dev_predictions]
anns = {}
with open(args.anns) as f:
for line in f:
id_, labels = line.strip().split('\t')
anns[id_] = labels.split('|')
ensemble_preds, ensemble_preds2 = predict_ensemble_clf(test_predictions=test_predictions,
dev_predictions=dev_predictions,
true_labels=anns)
with open(args.output+"2", 'w') as f:
for key, value in ensemble_preds2.items():
if len(value) > 0:
labels = "|".join(value)
f.write(f"{key}\t{labels}\n")
else:
f.write(f"{key}\n")
with open(args.output, 'w') as f:
for key, value in ensemble_preds.items():
if len(value) > 0:
labels = "|".join(value)
f.write(f"{key}\t{labels}\n")
else:
f.write(f"{key}\n")