-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
259 lines (221 loc) · 12.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import argparse
import time
import numpy as np
import tensorflow as tf
from sklearn.mixture import GaussianMixture
from data.get_datasets import get_datasets
from data.import_data import load_iconic_images, load_natural_images
from data.data_processing import onehot_encode
from utils.metrics import *
from classification.evaluate_classifier import evaluate_class_label_decoder, evaluate_softmax_classifier
from visualization.plot_images import save_images_with_metrics, save_decoded_images
from utils.get_latents import add_latents_to_dataset_using_tensors
from visualization.plot_latents import plot_latent_representation
parser = argparse.ArgumentParser()
# Directory arguments
parser.add_argument('--data_path', type=str, default='./data/processed', help='Data directory')
parser.add_argument('--model_dir', type=str, default='./saved_model', help='Saved model directory')
parser.add_argument('--save_dir', type=str, default='./saved_images_and_metrics', help='For saving images.')
# Model arguments
parser.add_argument('--model_name', type=str, default='vcca_xi', help='Model name',
choices=[ 'vae_x', 'vcca_xy', 'vcca_xw', 'vcca_xwy', 'vcca_xi', 'vcca_xiy', 'vcca_xiw', 'vcca_xiwy',
'vcca_private_xw', 'vcca_private_xwy', 'vcca_private_xi', 'vcca_private_xiy',
'ae_x', 'splitae_xy', 'splitae_xw', 'splitae_xwy', 'splitae_xi', 'splitae_xiy', 'splitae_xiw', 'splitae_xiwy', ])
parser.add_argument('--z_dim', type=int, default=200, help='Dimension of latent space.')
parser.add_argument('--K', type=int, default=5, help='Posterior samples when evaluating class label decoder.')
# GMM arguments
parser.add_argument('--n_components', type=int, default=2, help='Number of GMM components.')
parser.add_argument('--mc_samples', type=int, default=100, help='Number of monte carlo samples for approximating kl divergence.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
# Other arguments
parser.add_argument('--feature_extractor_name', type=str, default='densenet', help='Feature extractor. densenet or resnet')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size.')
parser.add_argument('--save_images', action='store_true', default=False, help='Save image with natural, true and decoded iconic images.')
parser.add_argument('--accuracy_file', type=str, default='./saved_images_and_metrics/accuracy.txt', help='File for saving accuracy.')
parser.add_argument('--iconic_image_file', type=str, default='./saved_images_and_metrics/iconic_image_metrics.txt',
help='File for saving metrics for iconic images.')
parser.add_argument('--save_decoded_images', action='store_true', default=False, help='Save decoded iconic images.')
args = parser.parse_args()
def restore_tf_graph(sess, model_dir):
""" Restore Tensorflow model and computational graph from meta file.
"""
graph = tf.get_default_graph()
meta_file = [f for f in os.listdir(model_dir) if f.endswith('.meta')][0]
ckpt_file = meta_file.replace('.meta','')
saver = tf.train.import_meta_graph(os.path.join(model_dir, meta_file))
saver.restore(sess, os.path.join(model_dir, ckpt_file))
return graph
def get_decoded_iconic_images(data, sess, input_tensor, target_tensor, batch_size=128):
""" Get the decoded iconic images corresponding to all features in a dataset.
"""
print('Get decoded iconic images...')
features = data['features']
n_examples = len(features)
n_batches = int(np.ceil(n_examples/batch_size))
targets = np.zeros([n_examples, 64, 64 ,3])
for i in range(n_batches):
start = i * batch_size
end = start + batch_size
if end > n_examples:
end = n_examples
targets[start:end] = sess.run(target_tensor, feed_dict={input_tensor: features[start:end]})
return targets
def fit_gaussian_mixtures(images, random_seed=0):
""" Fit Gaussian mixture models for images.
"""
gmms = []
for img in images:
data = img.reshape(-1, img.shape[-1])
gmm = GaussianMixture(n_components=args.n_components, random_state=random_seed)
gmm.fit(data)
gmms.append(gmm)
return np.array(gmms)
def compute_kl_matching(gmm_p, gmm_q, true_labels, n_samples=1000):
""" Compute KL divergence between all GMMs for decoded and
the corresponding true iconic images.
"""
kl = np.zeros(len(gmm_p))
for i, (gmm, true_label) in enumerate(zip(gmm_p, true_labels)):
gmm_true = gmm_q[true_label]
kl[i] = gmm_kl(gmm, gmm_true, n_samples=n_samples)
return np.mean(kl), kl
def compute_kl_for_all_images(gmm_decoded, gmm_true, n_samples=1000):
""" Compute KL divergence between all GMMs for decoded and all iconic images.
"""
kl = np.zeros([len(gmm_decoded), len(gmm_true)]) # [n_examples x n_classes]
for i, gmm_p in enumerate(gmm_decoded):
for j, gmm_q in enumerate(gmm_true):
kl[i, j] = gmm_kl(gmm_p, gmm_q, n_samples=n_samples)
return kl
# Add argument for use of classifier decoder, iconic image decoder
views = args.model_name.split('_')[-1]
args.use_labels = True if 'y' in views else False
args.use_text = True if 'w' in views else False
args.use_iconic = True if 'i' in views else False
args.use_private = True if 'private' in args.model_name else False
if not args.use_labels:
args.clf_dir = os.path.join(args.model_dir, 'saved_classifier')
# Create directories and files
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if not os.path.exists(args.accuracy_file):
os.mknod(args.accuracy_file)
config = tf.ConfigProto(device_count = {'GPU': 0}) # only use cpu
sess = tf.Session(config=config)
graph = restore_tf_graph(sess, args.model_dir)
# Get tensors
x = graph.get_tensor_by_name("x:0")
x_recon = graph.get_tensor_by_name("image_feature_recon:0")
# Load datasets
train_data, val_data, test_data = get_datasets(args)
eval_data = test_data
# Classification
if args.use_labels:
labels = graph.get_tensor_by_name("labels:0")
tensors = {'x': x, 'labels': labels}
model_type = args.model_name.split('_')[0]
if model_type == 'vcca':
tensors['scores'] = graph.get_tensor_by_name("classifier_val_softmax_score:0")
tensors['accuracy'] = graph.get_tensor_by_name("classifier_val_accuracy:0")
tensors['posterior_samples'] = graph.get_tensor_by_name("posterior_samples:0")
elif model_type == 'splitae':
tensors['scores'] = graph.get_tensor_by_name("logits:0")
tensors['accuracy'] = graph.get_tensor_by_name("accuracy:0")
#scores = graph.get_tensor_by_name("classifier_val_softmax_score:0")
#accuracy = graph.get_tensor_by_name("classifier_val_accuracy:0")
#posterior_samples = graph.get_tensor_by_name("posterior_samples:0")
#tensors = {'x': x, 'labels': labels, 'scores': scores, 'accuracy': accuracy,
# 'posterior_samples': posterior_samples}
accuracy, accuracy_coarse, predicted_labels = evaluate_class_label_decoder(args, sess, tensors, eval_data)
else:
print('softmax classifier')
latent_rep = graph.get_tensor_by_name("latent_rep:0")
latent_rep_train = sess.run(latent_rep, feed_dict={x: train_data['features']} )
latent_rep_eval = sess.run(latent_rep, feed_dict={x: eval_data['features']} )
train_data['latent_features'] = latent_rep_train
eval_data['latent_features'] = latent_rep_eval
accuracy, accuracy_coarse, predicted_labels = evaluate_softmax_classifier(args, eval_data, train_data, train=False)
# Write accuracies to file
with open(args.accuracy_file, 'a') as file:
file.write("Model Seed Accuracy Coarse Accuracy \n {:s} {:d} {:.3f} {:.3f} \n".format(
args.model_name, args.seed, accuracy, accuracy_coarse))
# Compute iconic image metrics
if args.use_iconic and not args.use_private:
# Create file for saving metrics
if not os.path.exists(args.iconic_image_file):
os.mknod(args.iconic_image_file)
# Get image paths
iconic_image_paths = np.unique(np.array(train_data['iconic_image_paths']))
labels_eval = eval_data['labels']
n_classes = eval_data['n_classes']
correct_idx = (predicted_labels == labels_eval)
# Get tensors
iconic_images = graph.get_tensor_by_name("iconic_images:0")
iconic_image_recon = graph.get_tensor_by_name("iconic_image_recon:0")
# Get decoded iconic images
true_iconic = load_iconic_images(eval_data['iconic_image_paths'])
decoded_iconic = get_decoded_iconic_images(eval_data, sess, x, iconic_image_recon, args.batch_size)
if args.save_decoded_images:
new_dir = os.path.join(args.save_dir, 'only_decoded')
if not os.path.exists(new_dir):
os.mkdir(new_dir)
save_decoded_images(decoded_iconic, save_dir=new_dir)
mse = compute_mse(true_iconic, decoded_iconic)
psnr = compute_psnr(true_iconic, decoded_iconic)
ssim = compute_ssim(true_iconic, decoded_iconic)
print('All images - MSE: {:.5f}, PSNR: {:.5f}, SSIM: {:.5f}'.format(mse, psnr, ssim))
mse_correct = compute_mse(true_iconic[correct_idx], decoded_iconic[correct_idx])
psnr_correct = compute_psnr(true_iconic[correct_idx], decoded_iconic[correct_idx])
ssim_correct = compute_ssim(true_iconic[correct_idx], decoded_iconic[correct_idx])
print('Correctly classified images - MSE: {:.5f}, PSNR: {:.5f}, SSIM: {:.5f}'.format(mse_correct, psnr_correct, ssim_correct))
mse_incorrect = compute_mse(true_iconic[~correct_idx], decoded_iconic[~correct_idx])
psnr_incorrect = compute_psnr(true_iconic[~correct_idx], decoded_iconic[~correct_idx])
ssim_incorrect = compute_ssim(true_iconic[~correct_idx], decoded_iconic[~correct_idx])
print('Misclassified images - MSE: {:.5f}, PSNR: {:.5f}, SSIM: {:.5f}'.format(mse_incorrect, psnr_incorrect, ssim_incorrect))
# Fit GMMs for true iconic images
true_iconic = load_iconic_images(iconic_image_paths)
np.random.seed(args.seed)
t0 = time.time()
print('Fit GMMs for computing KL divergences...')
gmm_true_iconic = fit_gaussian_mixtures(true_iconic, random_seed=args.seed)
gmm_decoded_iconic = fit_gaussian_mixtures(decoded_iconic, random_seed=args.seed)
print('Time elapsed: {:.2f} seconds'.format(time.time() - t0))
kl_mean, kl = compute_kl_matching(gmm_decoded_iconic, gmm_true_iconic,
labels_eval, n_samples=args.mc_samples)
# Save plots of images with corresponding metrics for each image
if args.save_images:
print('Saving images...')
natural_images = load_natural_images(eval_data['natural_image_paths'], [64, 64, 3])
true_iconic = load_iconic_images(eval_data['iconic_image_paths'])
correct_idx = correct_idx.astype(int)
image_path = os.path.join(args.save_dir, 'decoded_iconic_images')
if not os.path.exists(image_path):
os.mkdir(image_path)
save_images_with_metrics(true_iconic, decoded_iconic, natural_images,
labels_eval, predicted_labels, kl, image_path)
# Write all metrics to txt file
with open(args.iconic_image_file, 'w') as file:
file.write('MSE {:.4f} \nMSE_correct {:.4f} \nMSE_incorrect {:.4f} \n'
'PSNR {:.4f} \nPSNR_correct {:.4f} \n PSNR_incorrect {:.4f} \n'
'SSIM {:.4f} \nSSIM_correct {:.4f} \nSSIM_incorrect {:.4f} \n'
'KL {:.4f}\naccuracy {:.4f} \ncoarse_acc {:.4f} \n'.format(
mse, mse_correct, mse_incorrect, psnr, psnr_correct, psnr_incorrect,
ssim, ssim_correct, ssim_incorrect, kl_mean, accuracy, accuracy_coarse))
# Plot latent representations using tensors from restored model
tensors = {}
tensors['x'] = graph.get_tensor_by_name("x:0")
tensors['latents'] = graph.get_tensor_by_name("latent_rep:0")
if args.use_private:
tensors['latents_ux'] = graph.get_tensor_by_name("latent_rep_ux:0")
if args.use_text:
tensors['captions'] = graph.get_tensor_by_name("captions:0")
tensors['latents_uw'] = graph.get_tensor_by_name("latent_rep_uw:0")
if args.use_iconic:
tensors['iconic_images'] = graph.get_tensor_by_name("iconic_images:0")
tensors['latents_ui'] = graph.get_tensor_by_name("latent_rep_ui:0")
# Add latent representations to dataset dictionaries
train_data = add_latents_to_dataset_using_tensors(args, sess, tensors, train_data)
eval_data = add_latents_to_dataset_using_tensors(args, sess, tensors, eval_data)
# Plot latents in 2D using PCA
plot_latent_representation(args, train_data, eval_data, method='pca')