-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig6_d_e_f_g.Rmd
434 lines (344 loc) · 18.9 KB
/
fig6_d_e_f_g.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
---
title: "fig6_d_e_f_g.Rmd"
output:
html_document:
df_print: paged
toc: true
toc_depth: 3
pdf_document:
toc: true
toc_depth: 3
fig_caption: yes
includes:
in_header: my_header.tex
number_sections: true
keep_tex: true
word_document: default
date: "2023-07-18"
---
```{r setup, include=FALSE}
suppressPackageStartupMessages(library(gplots))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(ggthemes))
suppressPackageStartupMessages(library(DESeq2))
suppressPackageStartupMessages(library(limma))
suppressPackageStartupMessages(library(edgeR))
suppressPackageStartupMessages(library(ggpubr))
suppressPackageStartupMessages(library(grid))
suppressPackageStartupMessages(library(gridExtra))
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(UpSetR))
suppressPackageStartupMessages(library(pheatmap))
suppressPackageStartupMessages(library(gplots))
suppressPackageStartupMessages(library(kableExtra))
suppressPackageStartupMessages(library(estimate))
suppressPackageStartupMessages(library(reshape))
suppressPackageStartupMessages(library(sva))
suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(ggsci))
suppressPackageStartupMessages(library(parallel))
suppressPackageStartupMessages(library(RColorBrewer))
knitr::opts_chunk$set(echo = FALSE, cache=TRUE, warning=FALSE, message=FALSE)
```
```{r read_in_tcl}
library(openxlsx)
drug_screen <- read.xlsx("TCL_screen_data_reformatted.xlsx")
drug_screen <- drug_screen[!is.na(drug_screen$drug),]
row.names(drug_screen) <- drug_screen$drug
## dropcell line
drug_screen <- drug_screen[,c(-27,-26,-25,-24)]
drug_screen_just_via <- drug_screen[, c(5:23)]
drug_screen_metadata <- read.xlsx("TCL_screen_data_metadata.xlsx")
#remove cell line
drug_screen_metadata <- drug_screen_metadata[c(-20,-21,-22,-23),]
```
```{r pre-process-kegg-db, eval=F}
library(openxlsx)
library(KEGGREST)
library(data.table)
drug_screen <- read.xlsx("TCL_screen_data_reformatted.xlsx")
drug_screen <- drug_screen[!is.na(drug_screen$drug),]
row.names(drug_screen) <- drug_screen$drug
#drug_screen$target
## dropcell line
drug_screen <- drug_screen[,c(-27,-26,-25,-24)]
drug_screen_just_via <- drug_screen[, c(5:23)]
drug_screen <- drug_screen[!duplicated(gsub("\\(.*","",row.names(drug_screen))),]
row.names(drug_screen) <- gsub("\\(.*","",row.names(drug_screen))
drug_screen <- drug_screen[which(row.names(drug_screen) != ""),]
drug_ids = lapply(row.names(drug_screen), function(x) {print(x); keggFind("drug", x)})
drug_ids_df <- lapply(1:length(drug_ids), function(x) {
if(length(drug_ids[[x]]) > 0 ){
df <- data.frame(id =names(drug_ids[[x]])[1], name = drug_ids[[x]][[1]], num=x )
return(df)
}
}) %>% rbindlist()
drug_info <- lapply(1:nrow(drug_ids_df), function(x) {
id = as.character(drug_ids_df[x,]$id)
print(x)
num = drug_ids_df[x,]$num
x = keggGet(id)
target = NA
pathway = NA
class=NA
if(!is.null(x[[1]]$TARGET)){
if( is.atomic(x[[1]]$TARGET) ){
target = x[[1]]$TARGET
} else {
target = x[[1]]$TARGET$TARGET
target = gsub("\\[.*","",target)
target = gsub("\\(.*","",target)
target = gsub(" ","",target)
if(!is.null(x[[1]]$TARGET$PATHWAY)){
pathway = x[[1]]$TARGET$PATHWAY
pathway = gsub("\\(.*","",pathway)
}
}
}
if(!is.null( x[[1]]$CLASS[[1]])){
class = x[[1]]$CLASS[[1]]
}
df <- data.frame(id = id , target = paste0(target, collapse = ","), pathway=paste0(pathway, collapse = ","), class=class,num = num)
return(df)
}) %>% rbindlist()
drug_info <- merge(drug_info, drug_ids_df, by="num")
drug_info$name <- as.character(drug_info$name)
#drug_info$name <- gsub("\\(.*","",drug_info$name)
drug_info <- drug_info[!duplicated(drug_info$name),]
drug_info$target <- as.character(drug_info$target)
drug_info$target <- gsub("\\(.*","",drug_info$target)
drug_info$target <- gsub("\\[.*","",drug_info$target)
drug_info$target <- gsub("/",",",drug_info$target)
saveRDS(drug_info, "drug_info.RDS")
drug_screen_just_via_filt <- drug_screen_just_via[drug_info$num,]
row.names(drug_screen_just_via_filt) <- drug_info$name
saveRDS(drug_screen_just_via_filt, "drug_screen_just_via_filt.RDS")
```
```{r load-kegg-drug-db}
drug_info <- readRDS("drug_info.RDS")
drug_screen_just_via_filt <- readRDS("drug_screen_just_via_filt.RDS")
```
```{r load-data}
raw = read.csv("drugscreen.gene.counts.txt", row.names=1, check.names = F)
sub_met = read.csv("drugscreen.metadata.txt", row.names=1, check.names = F)
sub_met$TCL.subtype = factor(sub_met$TCL.subtype)
sub_met$source = factor(sub_met$source)
table(row.names(sub_met) == colnames(raw))
```
```{r pca, fig.align='center', fig.cap="Principal component analysis (PCA) reveals stratification of PDXs and primary tumor samples.", results="asis"}
deseq2.coldata <- data.frame(row.names = colnames(raw), sub_met, stringsAsFactors=F)
deseq2.coldata$source <- factor(deseq2.coldata$source)
deseq2.cds <- DESeq2::DESeqDataSetFromMatrix(countData = raw,colData = deseq2.coldata, design = ~1)
deseq2.cds <- estimateSizeFactors(deseq2.cds)
deseq2.rld <- DESeq2::vst(deseq2.cds, blind=TRUE)
deseq2.rld <- vst(deseq2.cds, blind=TRUE)
ntop = nrow(deseq2.rld)
Pvars <- rowVars(assay(deseq2.rld))
select <- order(Pvars, decreasing = TRUE)[seq_len(min(ntop, length(Pvars)))]
PCA <- prcomp(t(assay(deseq2.rld)[select, ]), scale = F)
percentVar <- round(100*PCA$sdev^2/sum(PCA$sdev^2),1)
dataGG = data.frame(PC1 = PCA$x[,1], PC2 = PCA$x[,2],PC3 = PCA$x[,3], sampleName = row.names(colData(deseq2.rld)),colData(deseq2.rld))
qplot(PC1, PC2, data = dataGG, color =TCL.subtype, size=I(3), main = "Principal component analysis") + labs(x = paste0("PC1: ", round(percentVar[1],4), "% variance"), y = paste0("PC2: ", round(percentVar[2],4), "% variance")) + theme_bw() + theme(legend.position="bottom") + scale_color_jco()
```
# Correlation analysis
To investigate the association between expression and drug sensitivity at gene level, (Pearson) correlation tests were performed to identify genes whose expressions are correlated with the sensitivity to the drugs with respect to the different TCL subtypes. In other words, is the drug response as measured by cell viability related to expression levels of the different TCL subtypes?
In order to answer to perform correlation, we need two matrices of equal sizes. The cell viability assay contains replicates for most PDX samples; thus, we will take the average of each replicate to reduce the measurement of any each PDX sample to one.
There is not a 1:1 mapping of passage time points in the cell viability data to the expression data. So, we will take the closest RNA-seq passage. Below is a table of the mapping we used:
```{r mapping, echo=FALSE}
## let's merge reps from viability
il69.p3 <- rowMeans(drug_screen_just_via_filt[,c(1,2)])
il69.p11 <- rowMeans(drug_screen_just_via_filt[,c(3,4)])
DN03.p18 <- rowMeans(drug_screen_just_via_filt[,c(5,6)])
il79.p7 <- drug_screen_just_via_filt[,c(7)]
il79.p8 <- rowMeans(drug_screen_just_via_filt[,c(8,9)])
il2.p5 <- rowMeans(drug_screen_just_via_filt[,c(10,11)])
il2.p7 <- rowMeans(drug_screen_just_via_filt[,c(12,13)])
mt05.p6 <-drug_screen_just_via_filt[,c(14)]
mt05.p8 <-rowMeans(drug_screen_just_via_filt[,c(15,16)])
mt05.p9 <- drug_screen_just_via_filt[,c(17)]
il26a.p4 <- rowMeans(drug_screen_just_via_filt[,c(18,19)])
drugs_via_merge <- data.frame(il69.p3=il69.p3,
il69.p11=il69.p11,
DN03.p18=DN03.p18,
il79.p7=il79.p7,
il79.p8=il79.p8,
il2.p5=il2.p5,
il2.p7=il2.p7,
mt05.p6=mt05.p6,
mt05.p8=mt05.p8,
mt05.p9=mt05.p9,
il26a.p4=il26a.p4)
df = data.frame("Drug-assay sample"= colnames(drugs_via_merge), "RNA-seq sample" = colData(deseq2.rld)$sampleName, TCL.subtype=colData(deseq2.rld)$TCL.subtype)
kable(df, "latex", booktabs = T, row.names=FALSE, caption = 'Summary of samples for correlation analysis. The cell viability for each drug test was correlated with the expression levels each gene across the different TCL subtypes .')
```
```{r corr-setup, fig.align='center', fig.width=12, fig.height=12, results="asis", echo=FALSE}
table(row.names(sub_met) == colnames(raw))
deseq2.coldata <- data.frame(row.names = colnames(raw), sub_met, stringsAsFactors=F)
deseq2.coldata$source <- factor(deseq2.coldata$source)
deseq2.cds <- DESeq2::DESeqDataSetFromMatrix(countData = raw,colData = deseq2.coldata, design = ~1)
deseq2.cds <- estimateSizeFactors(deseq2.cds)
deseq2.rld <- DESeq2::vst(deseq2.cds, blind=TRUE)
deseq2.rld <- vst(deseq2.cds, blind=TRUE)
deseq2.rld.unfilt <- vst(deseq2.cds, blind=TRUE)
keep <- apply(assay(deseq2.rld), 1, function(x) any(x >= 9))
deseq2.rld <- deseq2.rld[keep,]
## let's merge reps from viability
il69.p3 <- rowMeans(drug_screen_just_via_filt[,c(1,2)])
il69.p11 <- rowMeans(drug_screen_just_via_filt[,c(3,4)])
DN03.p18 <- rowMeans(drug_screen_just_via_filt[,c(5,6)])
il79.p7 <- drug_screen_just_via_filt[,c(7)]
il79.p8 <- rowMeans(drug_screen_just_via_filt[,c(8,9)])
il2.p5 <- rowMeans(drug_screen_just_via_filt[,c(10,11)])
il2.p7 <- rowMeans(drug_screen_just_via_filt[,c(12,13)])
mt05.p6 <-drug_screen_just_via_filt[,c(14)]
mt05.p8 <-rowMeans(drug_screen_just_via_filt[,c(15,16)])
mt05.p9 <- drug_screen_just_via_filt[,c(17)]
il26a.p4 <- rowMeans(drug_screen_just_via_filt[,c(18,19)])
drugs_via_merge <- data.frame(il69.p3=il69.p3,
il69.p11=il69.p11,
DN03.p18=DN03.p18,
il79.p7=il79.p7,
il79.p8=il79.p8,
il2.p5=il2.p5,
il2.p7=il2.p7,
mt05.p6=mt05.p6,
mt05.p8=mt05.p8,
mt05.p9=mt05.p9,
il26a.p4=il26a.p4)
df = data.frame("Drug-assay sample"= colnames(drugs_via_merge), "RNA-seq sample" = colData(deseq2.rld)$sampleName, TCL.subtype=colData(deseq2.rld)$TCL.subtype)
```
```{r corr, fig.align='center', fig.width=12, fig.height=12, results="asis", echo=FALSE, eval=T}
drug_info <- as.data.frame(drug_info)
drug_info$pathway <- as.character(drug_info$pathway)
drug_info = drug_info[grep("Ruxolitinib", drug_info$name),]
all = lapply( drug_info$num , function(y) {
num = as.numeric(y)
df <- drug_info[ drug_info[["num"]] == num , ]
df <- df[,c(2,7,5,3,4)]
colnames(df)[1] <- "id"
t_df <- t(df)
doi <- as.numeric(drugs_via_merge[as.numeric(colnames(t_df)),] )
env<-new.env()
env$plots1Names<-c()
plots1 <- lapply( strsplit(as.character(drug_info[ drug_info[["num"]] == num , ]$target), ",")[[1]] , function(x) {
# print(x)
gene = x
if(gene != "NA"){
if(length(grep(gene, row.names(deseq2.rld.unfilt))) > 0){
lapply( grep(gene, row.names(deseq2.rld.unfilt), value=T), function(x) {
# cat("\n\n##", x, "\n\n")
df = data.frame(doi=doi, rna=as.numeric(assay(deseq2.rld.unfilt[x,])), subtype = colData(deseq2.rld.unfilt)$TCL.subtype, patient = colData(deseq2.rld.unfilt)$patient, passage = colData(deseq2.rld.unfilt)$passage, name = colData(deseq2.rld.unfilt)$sampleName)
row.names(df) <- colnames(deseq2.rld.unfilt)
df$subtype <- as.character(df$subtype)
p1 <- ggbarplot(df, x="name", y="rna", fill="subtype", ylab="Expression level", xlab="", sort.by.groups=F, sort.val="none", color = "white", x.text.angle = 90) + scale_fill_jco() + coord_flip() + facet_grid(subtype~., scales="free")
p2 <- ggscatter(df, x="doi", y="rna", color="subtype", xlab="Cell viability", ylab="Expression level", cor.coef=TRUE, size=5, label="patient", legend = "bottom", title=paste0("Target", " : ", x)) + stat_smooth(method=lm, fill = "lightgray") + scale_color_jco()
#grid.arrange(p1, p2, ncol=2)
#return(grid.arrange(p1, p2, ncol=2))
env$plots1Names <- c(env$plots1Names, gene)
return(arrangeGrob(p1, p2, ncol=2))
})
}}
})
names(plots1) <- env$plots1Names
tmp = do.call(rbind, mclapply(1:nrow(deseq2.rld), function(i) {
res = cor.test(doi, assay(deseq2.rld[i,])[1,], method = "pearson")
data.frame(coef=unname(res$estimate), p=res$p.value)
}))
corResult <- tibble(ID = rownames(deseq2.rld),
symbol = rownames(deseq2.rld),
coef = tmp$coef,
p = tmp$p)
corResult <- arrange(corResult, p) %>% mutate(p.adj = p.adjust(p, method="BH"))
pCut = 0.05
corResult.sig <- filter(corResult, p <= pCut)
write.xlsx(corResult.sig,paste0(gsub(" ", "", drug_info[ drug_info[["num"]] == num , ]$name), ".pearsonCorResultsSig0.05.xlsx"))
p1 <- gghistogram(corResult, x="coef", color = "#00AFBB", fill="#00AFBB", rug=T, xlab="Correlation coefficient", main = "Histogram of coefficients")
p2 <- gghistogram(corResult, x="p", color = "#E7B800", fill="#E7B800", rug=T, xlab = "P value", main = "Histogram of P values") + geom_vline(xintercept=0.05)
p3 <- gghistogram(corResult.sig, x="coef", color = "#00AFBB", fill="#00AFBB", rug=T, xlab="Correlation coefficient", main = "Histogram of coefficients (P < 0.05)")
p4 <- gghistogram(corResult.sig, x="p", color = "#E7B800", fill="#E7B800", rug=T, xlab = "P value", main = "Histogram of P values (P < 0.05)") + geom_vline(xintercept=0.05)
# grid.arrange(p1, p2, p3, p4, ncol=2)
stats_df = data.frame("genes tested for correlation" = nrow(deseq2.rld), "number correlated (P < 0.05)" = nrow(corResult.sig), check.names = F)
gmt.kegg.list <- msigdbr::msigdbr(species = "Homo sapiens", category = "C2", subcategory = "CP:KEGG") %>% dplyr::select(gs_name, gene_symbol) %>% split(x = .$gene_symbol, f = .$gs_name)
gmt.kegg <- msigdbr::msigdbr(species = "Homo sapiens", category = "C2", subcategory = "CP:KEGG") %>% dplyr::select(gs_id, gs_name, gene_symbol)
kegg.gs <- EnrichmentBrowser::getGenesets(org="hsa", db="kegg", cache=FALSE)
kegg.gs.m = reshape2::melt(kegg.gs)
kegg.gs.m$value <- as.character(kegg.gs.m$value )
eg <- clusterProfiler::bitr(kegg.gs.m$value, fromType="ENTREZID", toType="SYMBOL", OrgDb="org.Hs.eg.db") %>% as.data.table
kegg.gs.df = merge(kegg.gs.m, eg, by.x="value", by.y="ENTREZID")
colnames(kegg.gs.df) <- c("entrezid", "pathway", "symbol")
kegg.gs.df$pathwayid <- gsub("_.*","",kegg.gs.df$pathway)
kegg.gs.df$pathwayname <- sub('.*?_',"",kegg.gs.df$pathway) %>% gsub("_", " ", .)
kegg.gs.list <- kegg.gs.df %>% split(x = .$symbol, f = .$pathwayid)
library(gridExtra)
env<-new.env()
env$stats<-data.frame()
env$plots2Names<-c()
if(drug_info[ drug_info[["num"]] == num , ]$pathway != "NA"){
plots2 = lapply( strsplit(as.character(drug_info[ drug_info[["num"]] == num , ]$pathway), ",")[[1]] , function(x) {
set = x
if(length(corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]]) >=2){
# cat('\\pagebreak')
# cat("\n\n##", x, "\n\n")
env$plots2Names <- c(env$plots2Names, x)
stats.sub = data.frame(set= length(corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]]))
colnames(stats.sub) <- paste0("num sig (P < 0.05) in ", set)
if (nrow(env$stats) > 0) {
env$stats <- cbind(env$stats, stats.sub)
} else {
env$stats <- stats.sub
}
title =paste0(unique(subset(kegg.gs.df, pathwayid == set)$pathwayid), " : ", unique(subset(kegg.gs.df, pathwayid == set)$pathwayname))
annotation_col = data.frame(subtype = colData(deseq2.rld)$TCL.subtype, viability = doi)
row.names(annotation_col) <- colnames(assay(deseq2.rld))
annotation_row = data.frame(coef=corResult.sig$coef[corResult.sig$symbol %in% kegg.gs.list[[set]]], p=corResult.sig$p[corResult.sig$symbol %in% kegg.gs.list[[set]]])
row.names(annotation_row) <- corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]]
hm = pheatmap(assay(deseq2.rld)[corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]],], scale="row", cluster_cols = T, annotation_col = annotation_col, annotation_row=annotation_row, color = viridis::inferno(100),cellwidth =25, cellheight = 400/nrow(annotation_row), main = title, silent=T)
hm2 = pheatmap(assay(deseq2.rld)[corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]],], scale="row", cluster_cols = F, annotation_col = annotation_col, annotation_row=annotation_row, color = viridis::inferno(100),cellwidth =25, cellheight = 400/nrow(annotation_row), main = title, silent=T)
return(arrangeGrob(grobs = list(hm[[4]]), ncol=1))
} else if (length(corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]]) > 0){
env$plots2Names <- c(env$plots2Names, x)
stats.sub = data.frame(set= length(corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]]))
colnames(stats.sub) <- paste0("num sig (P < 0.05) in ", set)
if (nrow(env$stats) > 0) {
env$stats <- cbind(env$stats, stats.sub)
} else {
env$stats <- stats.sub
}
goi = corResult.sig$symbol[corResult.sig$symbol %in% kegg.gs.list[[set]]]
cpm_df <- assay(deseq2.rld[goi,]) %>% reshape2::melt(., id.vars = rownames)
names(cpm_df) <- c("gene","sample","exprs")
cpm_df <- merge(cpm_df, colData(deseq2.rld), by.x = "sample", by.y="sampleName")
p <- ggdotplot(as.data.frame(cpm_df), x="sample", y="exprs", fill="TCL.subtype", color="TCL.subtype", facet.by=c("gene", "TCL.subtype"), scales="free", ylab = "Expression level")
}
}) %>% invisible()
}
names(plots2) <- env$plots2Names
cat('\\pagebreak')
cat("\n\n#", drug_info[ drug_info[["num"]] == num , ]$name, "\n\n")
if(nrow(env$stats) > 0 ){
print(kable(rbind(t_df, t(stats_df), (t(env$stats))), "latex", booktabs = T, row.names=T, col.names="") %>% kable_styling(latex_options = c("striped")))
} else {
print(kable(rbind(t_df, t(stats_df), t(data.frame("num sig in pathways" = 0, check.names = F))), "latex", booktabs = T, row.names=T, col.names="") %>% kable_styling(latex_options = c("striped")))
}
print(grid.arrange(p1, p2, p3, p4, ncol=2))
lapply(names(plots1), function(x) {
if(!is.null(plots1[[x]])){
x = x
cat("\n\n##", x, "\n\n")
grid.arrange((arrangeGrob(grobs = list(plots1[[x]][[1]]))))
cat('\\pagebreak')
}
})
lapply(names(plots2), function(x) {
if(!is.null(plots2[[x]])){
cat('\\pagebreak')
grid.arrange((arrangeGrob(grobs = list(plots2[[x]]))))
cat("\n\n##", x, "\n\n")
}
})
})
```
# Session Info
```{r session, message=FALSE, warning=FALSE, cache=FALSE,echo=FALSE, fig.width=10, fig.height=5.5, context="data"}
sessionInfo()
```