-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
285 lines (241 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import warnings
import time
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
os.environ['MUJOCO_GL'] = 'egl'
from pathlib import Path
import hydra
import numpy as np
import torch
from dm_env import specs
import dmc
import utils
from logger import Logger
from numpy_replay_buffer import EfficientReplayBuffer
from video import TrainVideoRecorder, VideoRecorder
from utils import load_offline_dataset_into_buffer
torch.backends.cudnn.benchmark = True
def make_agent(obs_spec, action_spec, cfg):
cfg.obs_shape = obs_spec.shape
cfg.action_shape = action_spec.shape
return hydra.utils.instantiate(cfg)
class Workspace:
def __init__(self, cfg):
self.work_dir = Path.cwd()
print(f'workspace: {self.work_dir}')
self.cfg = cfg
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self.setup()
self.agent = make_agent(self.train_env.observation_spec(),
self.train_env.action_spec(),
self.cfg.agent)
self.timer = utils.Timer()
self._global_step = 0
self._pretrain_step = 0
self._global_episode = 0
def setup(self):
# create logger
self.logger = Logger(self.work_dir, use_tb=self.cfg.use_tb, offline=self.cfg.offline,
distracting_eval=self.cfg.eval_on_distracting, multitask_eval=self.cfg.eval_on_multitask)
# create envs
self.train_env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
self.cfg.action_repeat, self.cfg.seed, self.cfg.distracting_mode)
self.eval_env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
self.cfg.action_repeat, self.cfg.seed, self.cfg.distracting_mode)
# create replay buffer
data_specs = (self.train_env.observation_spec(),
self.train_env.action_spec(),
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
self.replay_buffer = EfficientReplayBuffer(self.cfg.replay_buffer_size,
self.cfg.batch_size,
self.cfg.nstep,
self.cfg.discount,
self.cfg.frame_stack,
data_specs)
self.video_recorder = VideoRecorder(
self.work_dir if self.cfg.save_video else None)
self.train_video_recorder = TrainVideoRecorder(
self.work_dir if self.cfg.save_train_video else None)
self.eval_on_distracting = self.cfg.eval_on_distracting
self.eval_on_multitask = self.cfg.eval_on_multitask
@property
def global_step(self):
return self._global_step
@property
def pretrain_step(self):
return self._pretrain_step
@property
def global_episode(self):
return self._global_episode
@property
def pretrain_frame(self):
return self.pretrain_step * self.cfg.action_repeat
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
def eval(self):
step, episode, total_reward = 0, 0, 0
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
while eval_until_episode(episode):
time_step = self.eval_env.reset()
self.video_recorder.init(self.eval_env, enabled=(episode == 0))
while not time_step.last():
with torch.no_grad(), utils.eval_mode(self.agent):
action = self.agent.act(time_step.observation,
self.global_step,
eval_mode=True)
time_step = self.eval_env.step(action)
self.video_recorder.record(self.eval_env)
total_reward += time_step.reward
step += 1
episode += 1
#self.video_recorder.save(f'{self.global_frame}.mp4')
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
log('episode_reward', total_reward / episode)
log('episode_length', step * self.cfg.action_repeat / episode)
log('episode', self.global_episode)
log('step', self.global_step)
def eval_distracting(self, record_video):
distraction_modes = ['easy', 'medium', 'hard', 'fixed_easy', 'fixed_medium', 'fixed_hard']
if not hasattr(self, 'distracting_envs'):
self.distracting_envs = []
for distraction_mode in distraction_modes:
env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
self.cfg.action_repeat, self.cfg.seed, distracting_mode=distraction_mode)
self.distracting_envs.append(env)
for env, env_name in zip(self.distracting_envs, distraction_modes):
self.eval_single_env(env, env_name, record_video)
def eval_multitask(self, record_video):
multitask_modes = [f'len_{i}' for i in range(1, 11, 1)]
if not hasattr(self, 'multitask_envs'):
self.multitask_envs = []
for multitask_mode in multitask_modes:
env = dmc.make(self.cfg.task_name, self.cfg.frame_stack,
self.cfg.action_repeat, self.cfg.seed, multitask_mode=multitask_mode)
self.multitask_envs.append(env)
for env, env_name in zip(self.multitask_envs, multitask_modes):
self.eval_single_env(env, env_name, record_video)
def eval_single_env(self, env, env_name, save_video):
step, episode, total_reward = 0, 0, 0
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
while eval_until_episode(episode):
time_step = env.reset()
self.video_recorder.init(env, enabled=((episode == 0) and save_video))
while not time_step.last():
with torch.no_grad(), utils.eval_mode(self.agent):
action = self.agent.act(time_step.observation,
self.global_step,
eval_mode=True)
time_step = env.step(action)
self.video_recorder.record(env)
total_reward += time_step.reward
step += 1
episode += 1
self.video_recorder.save(f'{env_name}_{self.global_frame}.mp4')
self.logger.log(f'eval/{env_name}_episode_reward', total_reward / episode, self.global_frame)
def train_offline(self, offline_dir):
# Open dataset, load as memory buffer
load_offline_dataset_into_buffer(Path(offline_dir), self.replay_buffer, self.agent, self.cfg.frame_stack,
self.cfg.replay_buffer_size)
if self.replay_buffer.index == -1:
raise ValueError('No offline data loaded, check directory.')
# predicates
train_until_step = utils.Until(self.cfg.num_train_frames, 1)
pretrain_until_step = utils.Until(self.cfg.pretrain_num_frames, 1)
eval_every_step = utils.Every(self.cfg.eval_every_frames, 1)
show_train_stats_every_step = utils.Every(self.cfg.show_train_stats_every_frames, 1)
# only in distracting evaluation mode
eval_save_vid_every_step = utils.Every(self.cfg.eval_save_vid_every_step,
self.cfg.action_repeat)
metrics = None
step = 0
if 'ACRO' in self.cfg.agent['_target_']:
while pretrain_until_step(self.pretrain_step):
previous_time = time.time()
if show_train_stats_every_step(self.pretrain_step):
# wait until all the metrics schema is populated
if self.pretrain_step % 10000 == 0:
tn = time.time()
print('pretraining step finished:', str(self.pretrain_step), ' steps',
', time cost:', tn-previous_time)
previous_time = tn
# # log stats
# elapsed_time, total_time = self.timer.reset()
# with self.logger.log_and_dump_ctx(self.pretrain_frame,
# ty='pretrain') as log:
# log('fps', step / elapsed_time)
# log('total_time', total_time)
# log('buffer_size', len(self.replay_buffer))
# log('step', self.pretrain_step)
# step = 0
# try to save snapshot
if self.cfg.save_snapshot:
self.save_snapshot()
step += 1
self.agent.pretrain(self.replay_buffer, self.pretrain_step)
# if show_train_stats_every_step(self.pretrain_step):
# self.logger.log_metrics(metrics, self.pretrain_frame, ty='pretrain')
self._pretrain_step += 1
while train_until_step(self.global_step):
if show_train_stats_every_step(self.global_step):
# wait until all the metrics schema is populated
if metrics is not None:
# log stats
elapsed_time, total_time = self.timer.reset()
with self.logger.log_and_dump_ctx(self.global_frame,
ty='train') as log:
log('fps', step / elapsed_time)
log('total_time', total_time)
log('buffer_size', len(self.replay_buffer))
log('step', self.global_step)
step = 0
# try to save snapshot
if self.cfg.save_snapshot:
self.save_snapshot()
step += 1
# try to evaluate
if eval_every_step(self.global_step):
self.logger.log('eval_total_time', self.timer.total_time(),
self.global_frame)
if self.eval_on_distracting:
self.eval_distracting(eval_save_vid_every_step(self.global_step))
if self.eval_on_multitask:
self.eval_multitask(eval_save_vid_every_step(self.global_step))
self.eval()
# try to update the agent
metrics = self.agent.update(self.replay_buffer, self.global_step)
if show_train_stats_every_step(self.global_step):
self.logger.log_metrics(metrics, self.global_frame, ty='train')
self._global_step += 1
def save_snapshot(self):
snapshot = self.work_dir / 'snapshot.pt'
keys_to_save = ['agent', 'timer', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def load_snapshot(self):
snapshot = self.work_dir / 'snapshot.pt'
with snapshot.open('rb') as f:
payload = torch.load(f)
for k, v in payload.items():
self.__dict__[k] = v
@hydra.main(config_path='cfgs', config_name='config')
def main(cfg):
from train import Workspace as W
root_dir = Path.cwd()
workspace = W(cfg)
print(cfg)
snapshot = root_dir / 'snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot()
workspace.train_offline(cfg.offline_dir)
if __name__ == '__main__':
main()