-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsvd.py
343 lines (271 loc) · 10.5 KB
/
svd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import time
import multiprocessing as mp
import pandas as pd
import numpy as np
def matrix_approx(U, M, low=0, high=20):
A = np.dot(U.T, M)
A[A < low] = low
A[A > high] = high
return A
def batch_svd(train_data, learn_rate=0.00001, regc_u=0.015, regc_m=0.015,
low=0, high=20, dim=50, momentum=0.9, threshold=0.001,
debug=False):
"""Batch Singular Value Decomposition with Momentum. Terminates when an
update fails to improve RMSE by `threshold`, which defaults to 0.001.
"""
# compute indicator for training data
I = train_data.copy()
I[~I.isnull()] = 1
I = I.fillna(0).values
# set initial values of user and item matrices (U & M)
global_mean = train_data.mean().mean() # ignoring nan values
train_data[train_data.isnull()] = global_mean
init = np.sqrt((global_mean - low) / dim)
# U is the user matrix, so f x n
n = len(train_data)
U = init + np.random.uniform(-1, 1, (dim, n))
# M is the item matrix, so f x m
m = len(train_data.columns)
M = init + np.random.uniform(-1, 1, (dim, m))
# init momentum matrices
u_mom = np.zeros((dim, n))
m_mom = np.zeros((dim, m))
# run gradient descent
A = np.dot(U.T, M)
err = train_data - A
mse = (err**2 * I).mean().mean()
rmse = np.sqrt(mse)
rmse_record = [rmse]
improvement = 1
iterations = 0
# for _ in xrange(iterations):
while iterations < 10 or improvement >= threshold:
# update momentums
u_mom = momentum * u_mom
m_mom = momentum * m_mom
# calculate partial derivatives
u_deriv = I.T[:dim,:] * (low + np.dot(M, err.T)) - regc_u * U
m_deriv = I[:dim,:m] * (low + np.dot(U, err)) - regc_m * M
# perform updates and calculate prediction matrix A
u_mom += learn_rate * u_deriv
m_mom += learn_rate * m_deriv
U += u_mom
M += m_mom
A = np.dot(U.T, M)
# bound the values and compute error
A[A > high] = high
A[A < low] = low
err = train_data - A
mse = (err**2 * I).mean().mean()
rmse = np.sqrt(mse)
improvement = rmse_record[-1] - rmse
rmse_record.append(rmse)
iterations += 1
if debug:
return U, M, rmse_record
else:
return U, M
def incremental_svd(train_data, learn_rate=0.0025, regc_u=0.015, regc_m=0.015,
low=0, high=20, dim=50, threshold=0.001, debug=False):
"""Complete Incremental Singular Value Decomposition.
Terminates when an update fails to improve RMSE by `threshold`, which
defaults to 0.001.
Normally this method would be able to converge faster with a higher learning
rate than used in batch SVD. Unfortunately, this is not as useful in Python,
since the vectorized computations possible in the batch version are
drastically faster than the non-vectorized computations in this one.
"""
# compute indicator for training data
I = train_data.copy()
I[~I.isnull()] = 1
I = I.fillna(0).values
# perform mean value imputation
global_mean = train_data.mean().mean()
train_data[train_data.isnull()] = global_mean
# set initial values of user and item matrices (U & M)
init = np.sqrt((global_mean - low) / dim)
# U is the user matrix, so f x n
n = len(train_data)
U = init + np.random.uniform(-1, 1, (dim, n))
# M is the item matrix, so f x m
m = len(train_data.columns)
M = init + np.random.uniform(-1, 1, (dim, m))
# run gradient descent
A = np.dot(U.T, M)
err = train_data - A
mse = (err**2 * I).mean().mean()
rmse = np.sqrt(mse)
rmse_record = [rmse]
improvement = 1
while improvement >= threshold:
# Perform updates value-wise
for (i, j), val in np.ndenumerate(train_data):
# ignore missing values
if not I[i,j]:
continue
# calculate partial derivatives
U_i = U[:,i]
M_j = M[:,j]
predict = low + np.dot(U_i, M_j)
err = val - predict
u_deriv = err * M_j - regc_u * U_i
m_deriv = err * U_i - regc_m * M_j
# perform updates
U[:,i] += learn_rate * u_deriv
M[:,j] += learn_rate * m_deriv
# calculate prediction matrix, bound the values, and compute error
A = np.dot(U.T, M)
A[A > high] = high
A[A < low] = low
err = train_data - A
mse = (err**2 * I).mean().mean()
rmse = np.sqrt(mse)
improvement = rmse_record[-1] - rmse
rmse_record.append(rmse)
if debug:
return U, M, rmse_record
else:
return U, M
def biased_incremental_svd(train_data, learn_rate=0.0025, regc_u=0.02,
regc_m=0.02, regc_b=0.05, low=0, high=20, dim=50,
threshold=0.005, debug=False):
"""Complete Incremental Singular Value Decomposition with bias terms.
Terminates when an update fails to improve RMSE by `threshold`, which
defaults to 0.001.
"""
# TODO: incorporate global mean as global bias, in learning and prediction.
# compute indicator for training data
I = train_data.copy()
I[~I.isnull()] = 1
I = I.fillna(0).values
# perform mean value imputation
global_mean = train_data.mean().mean()
train_data[train_data.isnull()] = global_mean
# set initial values of user and item matrices (U & M)
init = np.sqrt((global_mean - low) / dim)
# U is the user matrix, so f x n
n = len(train_data)
U = init + np.random.uniform(-1, 1, (dim, n))
# M is the item matrix, so f x m
m = len(train_data.columns)
M = init + np.random.uniform(-1, 1, (dim, m))
# initialize the bias terms
a = init + np.random.uniform(-1, 1, n) # user bias
b = init + np.random.uniform(-1, 1, m) # item bias
# run gradient descent
A = np.dot(U.T, M)
err = train_data - A
mse = (err**2 * I).mean().mean()
rmse = np.sqrt(mse)
rmse_record = [rmse]
improvement = 1
while improvement >= threshold:
# Perform updates value-wise
for (i, j), val in np.ndenumerate(train_data):
# ignore missing values
if not I[i,j]:
continue
# calculate partial derivatives
U_i = U[:,i]
M_j = M[:,j]
predict = low + np.dot(U_i, M_j) + a[i] + b[j]
err = val - predict
u_deriv = err * M_j - regc_u * U_i
m_deriv = err * U_i - regc_m * M_j
a_deriv = err - regc_b * a[i]
b_deriv = err - regc_b * b[j]
# perform updates
U[:,i] += learn_rate * u_deriv
M[:,j] += learn_rate * m_deriv
a[i] += learn_rate * a_deriv
b[j] += learn_rate * b_deriv
# calculate prediction matrix, bound the values, and compute error
A = np.dot(U.T, M)
A[A > high] = high
A[A < low] = low
err = train_data - A
mse = (err**2 * I).mean().mean()
rmse = np.sqrt(mse)
improvement = rmse_record[-1] - rmse
rmse_record.append(rmse)
if debug:
return U, M, a, b, rmse_record
else:
return U, M, a, b
def rmse(actual, predicted, low=0):
indicator = actual.copy()
indicator[indicator >= low] = 1
indicator = actual.copy().fillna(0)
se = (actual - predicted)**2 * indicator
mse = se.sum().sum() / indicator.values.sum()
return np.sqrt(mse)
def extract_test_set(data, num_test=3):
"""Extract a test set from the data and return it, modifying the original
data in place to remove the test data extracted.
:param DataFrame data: The data to split into test/train.
:param int num_test: Number of test ratings to sample for each user.
:return: test DataFrame, which has the same shape as `data`.
"""
# make sure index and columns are both ints
data.index = data.index.astype(np.int)
data.columns = data.columns.astype(np.int)
# randomly select 3 ratings for each user to use as test data
# for now, just assume we have 3 valid options
valid = data.notnull()
test = pd.DataFrame(np.zeros(data.shape))
test.columns = data.columns
test.index = data.index
for row in xrange(len(data)):
data_row = data.ix[row]
options = data_row[valid.ix[row]]
choices = np.random.choice(options.index, replace=False, size=num_test)
test.ix[row].ix[choices] = data_row.ix[choices]
data_row.ix[choices] = np.nan
return test
def load_jester_data(fname='data/jester-data-all.csv', nrows=1000):
data = pd.read_csv(fname, index_col=0, header=False, nrows=nrows)
data += 10 # ratings are from -10 to 10, lets make them 0 to 20
test = extract_test_set(data)
return data, test
def test_batch_svd(nrows=1000):
train, test = load_jester_data(nrows=nrows)
# these parameters were tuned through a number of test runs
start = time.time()
U, M, rmse_record = batch_svd(train, learn_rate=0.000012, dim=80,
threshold=0.0001, debug=True)
elapsed = time.time() - start
A = matrix_approx(U, M, 0, 20)
print "Batch SVD: %.5f (%.3fs)" % (
rmse(test, A, low=0), elapsed)
def test_incremental_svd(nrows=1000):
train, test = load_jester_data(nrows=nrows)
# these parameters were tuned through a number of test runs
start = time.time()
U, M, rmse_record = incremental_svd(
train, learn_rate=0.0025, dim=80, threshold=0.001, debug=True)
elapsed = time.time() - start
A = matrix_approx(U, M, 0, 20)
print "Incremental SVD: %.5f (%.3fs)" % (
rmse(test, A, low=0), elapsed)
def test_biased_incremental_svd(nrows=1000):
train, test = load_jester_data(nrows=nrows)
# these parameters were tuned through a number of test runs
start = time.time()
U, M, a, b, rmse_record = biased_incremental_svd(
train, learn_rate=0.0025, dim=80, threshold=0.001, debug=True)
elapsed = time.time() - start
dims = (len(a), len(b))
A = matrix_approx(U, M, low=0, high=20)
A += (np.repeat(a,len(b)).reshape(dims) +
np.repeat(b, len(a)).reshape(dims, order='F'))
print "Biased Incremental SVD: %.5f (%.3fs)" % (
rmse(test, A, low=0), elapsed)
if __name__ == "__main__":
jobs = []
for func in [test_batch_svd, test_incremental_svd,
test_biased_incremental_svd]:
p = mp.Process(target=func)
jobs.append(p)
p.start()
for job in jobs:
job.join()