This repository has been archived by the owner on Nov 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaugmix.py
136 lines (113 loc) · 4.8 KB
/
augmix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# augmix : https://github.com/google-research/augmix
from PIL import Image
from PIL import ImageOps
import numpy as np
def int_parameter(level, maxval):
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled to
level/PARAMETER_MAX.
Returns:
An int that results from scaling `maxval` according to `level`.
"""
return int(level * maxval / 10)
def float_parameter(level, maxval):
"""Helper function to scale `val` between 0 and maxval.
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled to
level/PARAMETER_MAX.
Returns:
A float that results from scaling `maxval` according to `level`.
"""
return float(level) * maxval / 10.
def sample_level(n):
return np.random.uniform(low=0.1, high=n)
def autocontrast(pil_img, _, __):
return ImageOps.autocontrast(pil_img)
def equalize(pil_img, _, __):
return ImageOps.equalize(pil_img)
def posterize(pil_img, level, __):
level = int_parameter(sample_level(level), 4)
return ImageOps.posterize(pil_img, 4 - level)
def rotate(pil_img, level, __):
degrees = int_parameter(sample_level(level), 30)
if np.random.uniform() > 0.5:
degrees = -degrees
return pil_img.rotate(degrees, resample=Image.BILINEAR)
def solarize(pil_img, level, __):
level = int_parameter(sample_level(level), 256)
return ImageOps.solarize(pil_img, 256 - level)
def shear_x(pil_img, level, SIZE):
level = float_parameter(sample_level(level), 0.3)
if np.random.uniform() > 0.5:
level = -level
return pil_img.transform((SIZE, SIZE),
Image.AFFINE, (1, level, 0, 0, 1, 0),
resample=Image.BILINEAR)
def shear_y(pil_img, level, SIZE):
level = float_parameter(sample_level(level), 0.3)
if np.random.uniform() > 0.5:
level = -level
return pil_img.transform((SIZE, SIZE),
Image.AFFINE, (1, 0, 0, level, 1, 0),
resample=Image.BILINEAR)
def translate_x(pil_img, level, SIZE):
level = int_parameter(sample_level(level), SIZE / 3)
if np.random.random() > 0.5:
level = -level
return pil_img.transform((SIZE, SIZE),
Image.AFFINE, (1, 0, level, 0, 1, 0),
resample=Image.BILINEAR)
def translate_y(pil_img, level, SIZE):
level = int_parameter(sample_level(level), SIZE / 3)
if np.random.random() > 0.5:
level = -level
return pil_img.transform((SIZE, SIZE),
Image.AFFINE, (1, 0, 0, 0, 1, level),
resample=Image.BILINEAR)
def normalize(image, MEAN, STD):
"""Normalize input image channel-wise to zero mean and unit variance."""
mean, std = np.array(MEAN), np.array(STD)
image = (image - mean) / std
return image
def apply_op(image, op, severity, SIZE):
image = np.clip(image * 255., 0, 255).astype(np.uint8)
pil_img = Image.fromarray(image) # Convert to PIL.Image
pil_img = op(pil_img, severity, SIZE)
return np.asarray(pil_img) / 255.
def augment_and_mix(image, severity=-1, width=3, depth=-1, alpha=1.):
"""Perform AugMix augmentations and compute mixture.
Args:
image: Raw input image as float32 np.ndarray of shape (h, w, c)
severity: Severity of underlying augmentation operators (between 1 to 10).
if set < 0, random number between [1, 3] is chosen.
width: Width of augmentation chain
depth: Depth of augmentation chain. -1 enables stochastic depth uniformly
from [1, 3]
alpha: Probability coefficient for Beta and Dirichlet distributions.
Returns:
mixed: Augmented and mixed image.
"""
augmentations = [autocontrast, equalize, posterize, rotate,
solarize, shear_x, shear_y, translate_x, translate_y]
ws = np.float32(np.random.dirichlet([alpha] * width))
m = np.float32(np.random.beta(alpha, alpha))
mix = np.zeros_like(image)
if severity < 0:
severity = np.random.randint(1, 4)
for i in range(width):
image_aug = image.copy()
depth = depth if depth > 0 else np.random.randint(1, 4)
for _ in range(depth):
op = np.random.choice(augmentations)
image_aug = apply_op(image_aug, op, severity, image_aug.shape[0])
# mix = np.add(mix, ws[i] * normalize(image_aug, MEAN, STD),
# out=mix, casting="unsafe")
mix += ws[i] * image_aug
mixed = (1 - m) * image + m * mix
# mixed = (1 - m) * normalize(image, MEAN, STD) + m * mix
return mixed
# test
#print(augment_and_mix(np.random.uniform(size=(5, 5))))