-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_inversion.py
220 lines (168 loc) · 8.55 KB
/
train_inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import json
import sys
import pprint
import torch
import torch.distributed as dist
from models.psp import pSp
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from options.train_options import TrainOptions
from torch.nn.parallel import DistributedDataParallel as DDP
from training.ranger import Ranger
import numpy as np
from utils.camera_utils import FOV_to_intrinsics, LookAtPoseSampler
import torch.nn.functional as F
import torch.nn as nn
from lpips import LPIPS
from models.id_loss import IDLoss
from models.w_norm import WNormLoss
import PIL.Image as Image
sys.path.append(".")
sys.path.append("..")
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
class Criterion(nn.Module):
def __init__(self, opts):
super(Criterion, self).__init__()
self.mse_loss = nn.MSELoss().to(opts.device).eval()
self.lpips_loss = LPIPS(net='alex').to(opts.device).eval()
self.id_loss = IDLoss().to(opts.device).eval()
self.w_norm_loss = WNormLoss(start_from_latent_avg=opts.start_from_latent_avg)
def ger_average_color(self, mask, arms):
color = torch.zeros(arms.shape).cuda()
mask = mask.repeat([arms.shape[0], 1, 1, 1])
for i in range(arms.shape[0]):
count = len(torch.nonzero(mask[i, :, :, :]))
if count < 10:
color[i, 0, :, :] = 0
color[i, 1, :, :] = 0
color[i, 2, :, :] = 0
else:
color[i, 0, :, :] = arms[i, 0, :, :].sum() / count
color[i, 1, :, :] = arms[i, 1, :, :].sum() / count
color[i, 2, :, :] = arms[i, 2, :, :].sum() / count
return color
def calc_loss(self, x, x_prime, x_hat, x_hat_prime, wx, wx_hat, w_avg, pseudo_factor=0.8):
loss_dict = {}
loss_w_norm = 0.0
loss_w_norm += self.w_norm_loss(wx, w_avg)
loss_w_norm += self.w_norm_loss(wx_hat, w_avg) * pseudo_factor
loss_w_norm /= (1 + pseudo_factor)
loss_dict['loss_w_norm'] = float(loss_w_norm)
loss_w_plus = (1 - torch.cosine_similarity(wx, wx_hat, dim=2).mean())
loss_dict['loss_w_plus'] = float(loss_w_plus)
loss_id = self.id_loss.forward(x, x_prime)
loss_dict['loss_id'] = float(loss_id)
loss_id_rand = self.id_loss.forward(x, x_hat)
loss_dict['loss_id_rand'] = float(loss_id_rand)
loss_l1 = F.l1_loss(x, x_prime) + (F.l1_loss(x, x_hat_prime) + F.l1_loss(x_prime, x_hat_prime)) * pseudo_factor
loss_dict['loss_l1'] = float(loss_l1)
loss_lpips = self.lpips_loss(x, x_prime) + self.lpips_loss(x, x_hat_prime) * pseudo_factor
loss_dict['loss_lpips'] = float(loss_lpips)
loss = loss_w_norm * 0.005 + loss_w_plus + loss_id + loss_id_rand + loss_l1 + loss_lpips
loss_dict['loss'] = float(loss)
return loss, loss_dict
def make_experiment_dir(opts):
opts.exp_dir = os.path.join('experiments', opts.exp_dir)
os.makedirs(opts.exp_dir, exist_ok=True)
os.makedirs(os.path.join(opts.exp_dir, 'sample'), exist_ok=True)
opts_dict = vars(opts)
pprint.pprint(opts_dict)
with open(os.path.join(opts.exp_dir, 'opt.json'), 'w') as f:
json.dump(opts_dict, f, indent=4, sort_keys=True)
def configure_optimizers(model, opts):
params = model.encoder.parameters()
optimizer = Ranger(params, lr=opts.learning_rate)
return optimizer
def configure_dataset(opts):
dataset_args = data_configs.DATASETS[opts.dataset_type]
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
target_root=dataset_args['train_target_root'],
opts=opts)
return train_dataset
def gen_avg_latent(opts, net):
intrinsics = FOV_to_intrinsics(18.837, device=opts.device)
cam_pivot = torch.tensor(net.decoder.rendering_kwargs.get('avg_camera_pivot', [0, 0, 0]), device=opts.device)
cam_radius = net.decoder.rendering_kwargs.get('avg_camera_radius', 2.7)
conditioning_cam2world_pose = LookAtPoseSampler.sample(np.pi / 2, np.pi / 2, cam_pivot, radius=cam_radius, device=opts.device)
constant_params = torch.cat([conditioning_cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
num_samples = 10000
z_samples = np.random.RandomState(123).randn(num_samples, 512)
w_samples = net.decoder.mapping(torch.from_numpy(z_samples).to(opts.device),
constant_params.repeat([num_samples, 1]), truncation_psi=0.7,
truncation_cutoff=14)
w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32)
w_avg = np.mean(w_samples, axis=0, keepdims=True)
w_avg = np.repeat(w_avg, 14, axis=1)
w_avg = torch.tensor(w_avg).to(opts.device)
return w_avg
def print_metrics(metrics_dict, prefix, global_step):
print(f'Metrics for {prefix}, step {global_step}')
for key, value in metrics_dict.items():
print(f'\t{key} = ', value)
def __get_save_dict(net):
save_dict = {
'state_dict': net.state_dict(),
}
return save_dict
def checkpoint_me(loss_dict, global_step, net, opts):
save_name = f'iteration_{global_step}.pt'
save_dict = __get_save_dict(net)
checkpoint_path = os.path.join(opts.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(opts.checkpoint_dir, 'timestamp.txt'), 'a') as f:
f.write(f'Step - {global_step}, \n{loss_dict}\n')
def store(imgs, opts, name='test'):
img = torch.cat(imgs, 3)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
Image.fromarray(img[0].cpu().numpy(), 'RGB').save(os.path.join(opts.exp_dir, 'sample', name + '.png'))
def main():
dist.init_process_group("nccl")
rank = dist.get_rank()
opts = TrainOptions().parse()
make_experiment_dir(opts)
device_id = rank % torch.cuda.device_count()
opts.device = f'cuda:{device_id}'
opts.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(opts.checkpoint_dir, exist_ok=True)
model = pSp(opts, train_faceswap=False).to(device_id)
ddp_model = DDP(model, device_ids=[device_id])
criterion = Criterion(opts).to(device_id)
optimizer = configure_optimizers(ddp_model.module, opts)
train_set = configure_dataset(opts)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True)
data_loader_train = torch.utils.data.DataLoader(dataset=train_set, batch_size=opts.batch_size, sampler=train_sampler)
w_avg = gen_avg_latent(opts, ddp_model.module)
ddp_model.module.train()
global_step = 0
while global_step < opts.max_steps:
for batch_idx, batch in enumerate(data_loader_train):
optimizer.zero_grad()
x, y, cp, _, _ = batch
x, y = x.to(opts.device).float(), y.to(opts.device).float()
cp = cp.to(opts.device)
angle_x = torch.rand(1) - 1 / 2
angle_y = torch.rand(1) - 1 / 2
cam_pivot = torch.tensor(ddp_model.module.decoder.rendering_kwargs.get('avg_camera_pivot', [0, 0, 0]), device=opts.device)
cam_radius = ddp_model.module.decoder.rendering_kwargs.get('avg_camera_radius', 2.7)
intrinsics = FOV_to_intrinsics(18.837, device=opts.device)
cam2world_pose = LookAtPoseSampler.sample(np.pi / 2 + angle_y.to(opts.device),
np.pi / 2 + angle_x.to(opts.device), cam_pivot, radius=cam_radius,
device=opts.device)
rand_cp = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1).to(opts.device)
rand_cp = rand_cp.unsqueeze(dim=0).repeat([opts.batch_size, 1, 1])
x_prime, x_hat, x_hat_prime, wx, wx_hat = ddp_model.module.Inversion(x, cp, rand_cp, w_avg)
loss, loss_dict = criterion.calc_loss(x, x_prime, x_hat, x_hat_prime, wx, wx_hat, w_avg)
loss.backward()
optimizer.step()
if rank == 0:
if global_step % opts.board_interval == 0:
print_metrics(loss_dict, prefix='train', global_step=global_step)
if global_step % opts.save_interval == 0 or global_step == opts.max_steps:
checkpoint_me(loss_dict, global_step, ddp_model.module, opts)
if global_step % 500 == 0:
store([x, x_prime, x_hat, x_hat_prime], opts, str(global_step))
global_step += torch.cuda.device_count() * opts.batch_size
if __name__ == '__main__':
main()