-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval_detect_cla.py
375 lines (302 loc) · 14 KB
/
val_detect_cla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
''' Tune the ood detector's hyper-parameters
'''
import numpy as np
from pathlib import Path
from functools import partial
import argparse
import sklearn.covariance
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from torchvision import transforms
from datasets import get_transforms, get_dataset, get_dataset_info
from datasets import get_dataloader, get_uniform_noise_dataloader
from datasets import AvgOfPair, GeoMeanOfPair
from datasets import get_shift_transform
from models import get_classifier
from evaluation import compute_all_metrics
def get_odin_scores(classifier, data_loader, temperature, magnitude, std):
classifier.eval()
odin_scores = []
for sample in data_loader:
if isinstance(sample, dict):
data = sample['data']
else:
if data_loader.dataset.labeled:
data, _ = sample
else:
data = sample
data = data.cuda()
data.requires_grad = True
logit = classifier(data)
pred = logit.detach().argmax(axis=1)
logit = logit / temperature
criterion = nn.CrossEntropyLoss()
loss = criterion(logit, pred)
loss.backward()
# normalizing the gradient to binary in {-1, 1}
gradient = torch.ge(data.grad.detach(), 0)
gradient = (gradient.float() - 0.5) * 2
gradient[:, 0] = gradient[:, 0] / std[0]
gradient[:, 1] = gradient[:, 1] / std[1]
gradient[:, 2] = gradient[:, 2] / std[2]
tmpInputs = torch.add(data.detach(), -magnitude, gradient)
logit = classifier(tmpInputs)
logit = logit / temperature
# calculating the confidence after add the perturbation
nnOutput = logit.detach()
nnOutput = nnOutput - nnOutput.max(dim=1, keepdims=True).values
nnOutput = nnOutput.exp() / nnOutput.exp().sum(dim=1, keepdims=True)
odin_scores.extend(nnOutput.max(dim=1)[0].tolist())
return odin_scores
def sample_estimator(classifier, data_loader, num_classes, feature_dim_list):
classifier.eval()
group_lasso = sklearn.covariance.EmpiricalCovariance(assume_centered=False)
num_layers = len(feature_dim_list)
num_sample_per_class = np.zeros(num_classes)
list_features = [[0] * num_classes] * num_layers
for sample in data_loader:
data = sample['data'].cuda()
target = sample['label'].cuda()
hidden_features = classifier.feature_list(data)
# get hidden features
for i in range(num_layers):
hidden_features[i] = hidden_features[i].view(hidden_features[i].size(0), hidden_features[i].size(1), -1)
hidden_features[i] = torch.mean(hidden_features[i].data, 2)
# construct the sample matrix
for i in range(target.size(0)):
label = target[i]
if num_sample_per_class[label] == 0:
layer_count = 0
for hidden_feature in hidden_features:
list_features[layer_count][label] = hidden_feature[i].view(1, -1)
layer_count += 1
else:
layer_count = 0
for hidden_feature in hidden_features:
list_features[layer_count][label] = torch.cat((list_features[layer_count][label], hidden_feature[i].view(1, -1)), 0)
layer_count += 1
num_sample_per_class[label] += 1
category_sample_mean = []
layer_count = 0
for feature_dim in feature_dim_list:
tmp_list = torch.Tensor(num_classes, int(feature_dim)).cuda()
for j in range(num_classes):
tmp_list[j] = torch.mean(list_features[layer_count][j], 0)
category_sample_mean.append(tmp_list)
layer_count += 1
precision = []
for k in range(num_layers):
X = 0
for i in range(num_classes):
if i == 0:
X = list_features[k][i] - category_sample_mean[k][i]
else:
X = torch.cat((X, list_features[k][i] - category_sample_mean[k][i]), 0)
# find inverse
group_lasso.fit(X.cpu().numpy())
tmp_precision = group_lasso.precision_
tmp_precision = torch.from_numpy(tmp_precision).float().cuda()
precision.append(tmp_precision)
return category_sample_mean, precision
def get_maha_scores(classifier, data_loader, num_classes, sample_mean, precision, layer_index, magnitude, std):
classifier.eval()
maha_scores = []
for sample in data_loader:
if isinstance(sample, dict):
data = sample['data']
else:
if data_loader.dataset.labeled:
data, _ = sample
else:
data = sample
data = data.cuda()
data.requires_grad = True
hidden_feature = classifier.hidden_feature(data, layer_index)
hidden_feature = hidden_feature.view(hidden_feature.size(0), hidden_feature.size(1), -1)
hidden_feature = torch.mean(hidden_feature, 2)
# compute maha score
gaussian_score = 0
for i in range(num_classes):
category_sample_mean = sample_mean[layer_index][i]
zero_f = hidden_feature.data - category_sample_mean
term_gau = -0.5 * torch.mm(torch.mm(zero_f, precision[layer_index]), zero_f.t()).diag()
if i == 0:
gaussian_score = term_gau.view(-1, 1)
else:
gaussian_score = torch.cat((gaussian_score, term_gau.view(-1, 1)), 1)
# Input precessing
sample_pred = gaussian_score.max(1)[1]
category_sample_mean = sample_mean[layer_index].index_select(0, sample_pred)
zero_f = hidden_feature - category_sample_mean
pure_gau = -0.5 * torch.mm(torch.mm(zero_f, precision[layer_index]), zero_f.t()).diag()
loss = torch.mean(-pure_gau)
loss.backward()
gradient = torch.ge(data.grad.data, 0)
gradient = (gradient.float() - 0.5) * 2
gradient[:, 0] = gradient[:, 0] / std[0]
gradient[:, 1] = gradient[:, 1] / std[1]
gradient[:, 2] = gradient[:, 2] / std[2]
tmpInputs = torch.add(data.data, -magnitude, gradient)
with torch.no_grad():
noise_out_features = classifier.hidden_feature(tmpInputs, layer_index)
noise_out_features = noise_out_features.view(noise_out_features.size(0), noise_out_features.size(1), -1)
noise_out_features = torch.mean(noise_out_features, 2)
noise_gaussian_score = 0
for i in range(num_classes):
category_sample_mean = sample_mean[layer_index][i]
zero_f = noise_out_features.data - category_sample_mean
term_gau = -0.5 * torch.mm(torch.mm(zero_f, precision[layer_index]), zero_f.t()).diag()
if i == 0:
noise_gaussian_score = term_gau.view(-1, 1)
else:
noise_gaussian_score = torch.cat((noise_gaussian_score, term_gau.view(-1, 1)), 1)
noise_gaussian_score, _ = torch.max(noise_gaussian_score, dim=1)
maha_scores.extend(noise_gaussian_score.tolist())
return maha_scores
def get_ood_val_loader(name, mean, std, get_dataloader_default):
if name == 'pixelate':
transform = transforms.Compose([
get_shift_transform('pixelate'),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
else:
transform = transforms.Compose([
transforms.ToTensor(),
get_shift_transform(name),
transforms.Normalize(mean, std)
])
ood_val_loader = get_dataloader_default(name=args.id, transform=transform)
return ood_val_loader
scores_dic = {
'odin': get_odin_scores,
'maha': get_maha_scores
}
def main(args):
# print hyper-parameters
test_transform = get_transforms(args.id, stage='test')
get_dataloader_default = partial(
get_dataloader,
root=args.data_dir,
split='test',
batch_size=args.batch_size,
shuffle=False,
num_workers=args.prefetch
)
id_loader = get_dataloader_default(name=args.id, transform=test_transform)
mean, std = get_dataset_info(args.id, 'mean_and_std')
ood_loaders = []
uniform_noise_loader = get_uniform_noise_dataloader(10000, args.batch_size, False, args.prefetch)
ood_loaders.append(uniform_noise_loader)
id_dataset = get_dataset(root=args.data_dir, name=args.id, split='test', transform=test_transform)
avg_pair_loader = DataLoader(
AvgOfPair(id_dataset),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.prefetch,
pin_memory=True
)
ood_loaders.append(avg_pair_loader)
id_dataset = get_dataset(root=args.data_dir, name=args.id, split='test', transform=transforms.ToTensor())
geo_mean_loader = DataLoader(
GeoMeanOfPair(id_dataset),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.prefetch,
pin_memory=True
)
ood_loaders.append(geo_mean_loader)
jigsaw_loader = get_ood_val_loader('jigsaw', mean, std, get_dataloader_default)
ood_loaders.append(jigsaw_loader)
speckle_loader = get_ood_val_loader('speckle', mean, std, get_dataloader_default)
ood_loaders.append(speckle_loader)
pixelate_loader = get_ood_val_loader('pixelate', mean, std, get_dataloader_default)
ood_loaders.append(pixelate_loader)
rgb_shift_loader = get_ood_val_loader('rgb_shift', mean, std, get_dataloader_default)
ood_loaders.append(rgb_shift_loader)
invert_loader = get_ood_val_loader('invert', mean, std, get_dataloader_default)
ood_loaders.append(invert_loader)
# load classifier
num_classes = len(get_dataset_info(args.id, 'classes'))
classifier = get_classifier(args.classifier, num_classes)
classifier_path = Path(args.classifier_path)
if classifier_path.exists():
cla_params = torch.load(str(classifier_path))
# cla_acc = cla_params['cla_acc']
classifier.load_state_dict(cla_params['state_dict'])
# print('>>> load classifier from {} (classify acc {:.4f}%)'.format(str(classifier_path), cla_acc))
else:
raise RuntimeError('<--- invalid classifier path: {}'.format(str(classifier_path)))
gpu_idx = int(args.gpu_idx)
if torch.cuda.is_available():
torch.cuda.set_device(gpu_idx)
classifier.cuda()
cudnn.benchmark = True
# ------------------------------------ detect ood ------------------------------------
get_scores = scores_dic[args.scores]
fpr_at_tprs, aurocs, aupr_ins, aupr_outs = [], [], [], []
if args.scores == 'odin':
id_scores = get_scores(classifier, id_loader, args.temperature, args.magnitude, std)
elif args.scores == 'maha':
num_layers = 1
feature_dim_list = np.empty(num_layers)
feature_dim_list[0] = 128 # 64 * widen_factor
sample_mean, precision = sample_estimator(classifier, id_loader, num_classes, feature_dim_list)
id_scores = get_maha_scores(classifier, id_loader, num_classes, sample_mean, precision, num_layers - 1, args.magnitude, std)
else:
raise RuntimeError('<--- invalid scores: '.format(args.scores))
# another validation metrics
avg_score = np.mean(id_scores)
id_label = np.zeros(len(id_scores))
for ood_loader in ood_loaders:
if args.scores == 'odin':
ood_scores = get_scores(classifier, ood_loader, args.temperature, args.magnitude, std)
elif args.scores == 'maha':
ood_scores = get_maha_scores(classifier, ood_loader, num_classes, sample_mean, precision, num_layers-1, args.magnitude, std)
else:
raise RuntimeError('<--- invalid scores: '.format(args.scores))
ood_label = np.ones(len(ood_scores))
scores = np.concatenate([id_scores, ood_scores])
labels = np.concatenate([id_label, ood_label])
fpr_at_tpr, auroc, aupr_in, aupr_out = compute_all_metrics(scores, labels, verbose=False)
fpr_at_tprs.append(fpr_at_tpr)
aurocs.append(auroc)
aupr_ins.append(aupr_in)
aupr_outs.append(aupr_out)
if args.scores == 'odin':
print('---> [Temperature: {:.4f}, Magnitude: {:.4f}] [avg_score: {:.4f} | avg auroc: {:.4f} | avg fpr_at_tpr: {:.4f} | avg aupr_in: {:.4f} | avg aupr_out: {:.4f}]'.format(
args.temperature,
args.magnitude,
avg_score,
np.mean(aurocs),
np.mean(fpr_at_tprs),
np.mean(aupr_ins),
np.mean(aupr_outs)
)
)
if args.scores == 'maha':
print('---> [Magnitude: {:.4f}] [avg_score: {:.4f} | avg auroc: {:.4f} | avg fpr_at_tpr: {:.4f} | avg aupr_in: {:.4f} | avg aupr_out: {:.4f}]'.format(
args.magnitude,
avg_score,
np.mean(aurocs),
np.mean(fpr_at_tprs),
np.mean(aupr_ins),
np.mean(aupr_outs)
)
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ID & OOD-val to tune hyper-parameter')
parser.add_argument('--data_dir', type=str, default='/home/iip/datasets')
parser.add_argument('--id', type=str, default='cifar10')
parser.add_argument('--scores', type=str, default='odin')
parser.add_argument('--temperature', type=int, default=1000)
parser.add_argument('--magnitude', type=float, default=0.0014)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--prefetch', type=int, default=4)
parser.add_argument('--classifier', type=str, default='wide_resnet')
parser.add_argument('--classifier_path', type=str, default='./snapshots/cifar10/wrn.pth')
parser.add_argument('--gpu_idx', type=int, default=0)
args = parser.parse_args()
main(args)