-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cla.py
162 lines (132 loc) · 5.7 KB
/
train_cla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import time
import numpy as np
from functools import partial
from pathlib import Path
import random
import copy
import torch
import torch.backends.cudnn as cudnn
from datasets import get_dataset_info, get_transforms, get_dataloader
from models import get_classifier
from trainers import get_classifier_trainer
from evaluation import Evaluator
from utils import setup_logger
# scheduler
def cosine_annealing(step, total_steps, lr_max, lr_min):
return lr_min + (lr_max - lr_min) * 0.5 * (1 + np.cos(step / total_steps * np.pi))
def init_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main(args):
init_seeds(args.seed)
# store net and console log by training method
exp_path = Path(args.output_dir) / args.dataset / args.output_sub_dir
print('>>> Exp dir: {} '.format(str(exp_path)))
exp_path.mkdir(parents=True, exist_ok=True)
# record console output
setup_logger(str(exp_path), 'console.log')
# ------------------------------------ Init Datasets ------------------------------------
## get dataset transform
train_transform = get_transforms(args.dataset.split('-')[0], stage='train')
val_transform = get_transforms(args.dataset.split('-')[0], stage='test') # using train set's mean&std
print('>>> Dataset: {}'.format(args.dataset))
## get dataloader
get_dataloader_default = partial(
get_dataloader,
root=args.data_dir,
name=args.dataset,
batch_size=args.batch_size,
num_workers=args.prefetch
)
train_loader = get_dataloader_default(
split='train',
transform=train_transform,
shuffle=True
)
test_loader = get_dataloader_default(
split='test',
transform=val_transform,
shuffle=False
)
# ------------------------------------ Init Classifier ------------------------------------
num_classes = len(get_dataset_info(args.dataset.split('-')[0], 'classes'))
print('>>> Classifier: {}'.format(args.arch))
classifier = get_classifier(args.arch, num_classes)
# ------------------------------------ Init Trainer ------------------------------------
print('>>> Optimizer: SGD | Scheduler: LambdaLR')
print('>>> Lr: {:.5f} | Weight_decay: {:.5f} | Momentum: {:.2f}'.format(args.lr, args.weight_decay, args.momentum))
optimizer = torch.optim.SGD(classifier.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum)
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: cosine_annealing(
step,
args.epochs * len(train_loader),
1,
1e-6 / args.lr
)
)
trainer = get_classifier_trainer(classifier, train_loader, optimizer, scheduler)
# move classifier to gpu device
gpu_idx = int(args.gpu_idx)
if torch.cuda.is_available():
torch.cuda.set_device(gpu_idx)
classifier.cuda()
cudnn.benchmark = True
# ------------------------------------ Start training ------------------------------------
evaluator = Evaluator(classifier)
begin_time = time.time()
best_cla_acc = 0.0
start_epoch = 1
last_state = {}
for epoch in range(start_epoch, args.epochs+1):
trainer.train_epoch()
val_metrics = evaluator.eval_classification(test_loader)
cla_best = val_metrics['cla_acc'] > best_cla_acc
best_cla_acc = max(val_metrics['cla_acc'], best_cla_acc)
if epoch == args.epochs:
last_state = {
'epoch': epoch,
'arch': args.arch,
'state_dict': classifier.state_dict(),
'cla_acc': val_metrics['cla_acc']
}
if cla_best:
cla_best_state = {
'epoch': epoch,
'arch': args.arch,
'state_dict': copy.deepcopy(classifier.state_dict()),
'cla_acc': best_cla_acc
}
print(
"---> Epoch {:4d} | Time {:5d}s".format(
epoch,
int(time.time() - begin_time)
),
flush=True
)
# ------------------------------------ Trainig done, save model ------------------------------------
cla_best_path = exp_path / 'cla_best.pth'
torch.save(cla_best_state, str(cla_best_path))
last_path = exp_path / 'last.pth'
torch.save(last_state, str(last_path))
print('---> Best classify acc: {:.4f}%'.format(best_cla_acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train Classifier')
parser.add_argument('--seed', default=1, type=int, help='seed for initialize training')
parser.add_argument('--data_dir', help='directory to store datasets', default='/home/iip/datasets')
parser.add_argument('--dataset', type=str, default='cifar10')
parser.add_argument('--output_dir', help='dir to store experiment artifacts', default='outputs')
parser.add_argument('--output_sub_dir', help='sub dir to store experiment artifacts', default='wide_resnet')
parser.add_argument('--arch', type=str, default='wide_resnet')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--prefetch', type=int, default=4, help='number of dataloader workers')
parser.add_argument('--gpu_idx', help='used gpu idx', type=int, default=0)
args = parser.parse_args()
main(args)