-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_err.py
160 lines (127 loc) · 5.41 KB
/
rec_err.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import copy
from pathlib import Path
from functools import partial
import argparse
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
import torch.backends.cudnn as cudnn
from datasets import get_ae_transforms, get_ae_ood_transforms, get_dataloader
from models import get_ae
def get_rec_errs(ae, data_loader, output_dir):
visual_imgs = []
ae.eval()
total_loss = 0.0
rec_errs = []
for sample in data_loader:
data = sample['data'].cuda()
with torch.no_grad():
rec_data = ae(data)
rec_err = torch.sum(F.mse_loss(rec_data, data, reduction='none'), dim=[1, 2, 3])
rec_errs.extend(rec_err.tolist())
total_loss += rec_err.sum().item()
rec_err_list = rec_err.tolist()
max_rec_err = max(rec_err_list)
max_idx = rec_err_list.index(max_rec_err)
visual_img = {
'rec_err': max_rec_err,
'data': data[max_idx],
'rec_data': rec_data[max_idx]
}
visual_imgs.append(copy.deepcopy(visual_img))
sorted_visual_imgs = sorted(visual_imgs, key=lambda d: d['rec_err'], reverse=True)
for i in range(10):
img = sorted_visual_imgs[i]['data']
rec_img = sorted_visual_imgs[i]['rec_data']
img_path = output_dir / ('-'.join([data_loader.dataset.name, str(i), 'img']) + '.png')
save_image(img.cpu(), img_path)
rec_img_path = output_dir / ('-'.join([data_loader.dataset.name, str(i), 'rec_img']) + '.png')
save_image(rec_img.cpu(), rec_img_path)
if data_loader.dataset.name in ['cifar10', 'cifar100']:
print('loss: {:.8f}'.format(total_loss / len(data_loader.dataset)))
return rec_errs
def save_rec_imgs(ae, data_loader, output_dir):
output_dir.mkdir(parents=True, exist_ok=True)
ae.eval()
with torch.no_grad():
for batch_idx, sample in enumerate(data_loader):
data = sample['data'].cuda()
rec_data = ae(data)
# save original-reconstruct images
if batch_idx == 1:
n = min(data.size(0), 16)
comparison = torch.cat(
[data[:n], rec_data.view(-1, 3, 32, 32)[:n]]
)
rec_path = output_dir / ('-'.join([data_loader.dataset.name, 'rec_imgs']) + '.png')
save_image(comparison.cpu(), rec_path, nrow=16)
return None
def draw_hist(data, colors, labels, title, fig_path):
plt.clf()
bins = list(range(125))
plt.hist(data, bins, density=True, histtype='bar', color=colors, label=labels, alpha=1)
plt.xlabel('reconstruction error')
plt.ylabel('density')
plt.legend(prop={'size': 10})
plt.title(title)
plt.savefig(fig_path)
plt.close()
def main(args):
output_path = Path(args.output_dir)
id_transform = get_ae_transforms('test')
get_dataloader_default = partial(
get_dataloader,
root=args.data_dir,
split='test',
batch_size=args.batch_size,
shuffle=False,
num_workers=args.prefetch
)
id_loader = get_dataloader_default(name=args.id, transform=id_transform)
ood_loaders = []
for ood in args.oods:
ood_transform = get_ae_ood_transforms(ood, 'test')
ood_loaders.append(get_dataloader_default(name=ood, transform=ood_transform))
# load ae
ae = get_ae(args.arch)
ae_path = Path(args.ae_path)
if ae_path.exists():
ae_params = torch.load(str(ae_path))
rec_err = ae_params['rec_err']
ae.load_state_dict(ae_params['state_dict'])
print('>>> load ae from {} (rec err {:.6f})'.format(str(ae_path), rec_err))
else:
raise RuntimeError('<--- invalid ae path: {}'.format(str(ae_path)))
gpu_idx = int(args.gpu_idx)
if torch.cuda.is_available():
torch.cuda.set_device(gpu_idx)
ae.cuda()
cudnn.benchmark = True
# save rec images
save_rec_imgs(ae, id_loader, output_path)
id_rec_errs = get_rec_errs(ae, id_loader, output_path)
for ood_loader in ood_loaders:
# save rec images
save_rec_imgs(ae, ood_loader, output_path)
ood_rec_errs = get_rec_errs(ae, ood_loader, output_path)
# plot hist
rec_errs = [id_rec_errs, ood_rec_errs]
colors = ['lime', 'orangered']
labels = ['id', 'ood']
title = '-'.join([ood_loader.dataset.name, args.id, 'rec_err'])
fig_path = output_path / (title + '.png')
draw_hist(rec_errs, colors, labels, title, fig_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Autoencoder reconstruction')
parser.add_argument('--data_dir', type=str, default='/home/iip/datasets')
parser.add_argument('--output_dir', help='dir to store experiment artifacts', default='outputs/tmp')
parser.add_argument('--id', type=str, default='cifar10')
parser.add_argument('--oods', nargs='+', default=['svhn', 'cifar100', 'tinc', 'tinr', 'lsunc', 'lsunr', 'dtd', 'places365_10k', 'isun'])
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--prefetch', type=int, default=4)
parser.add_argument('--arch', type=str, default='res_ae')
parser.add_argument('--ae_path', type=str, default='./snapshots/cifar10/rec.pth')
parser.add_argument('--gpu_idx', type=int, default=0)
args = parser.parse_args()
main(args)