-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_cla_hybrid.py
444 lines (356 loc) · 17.8 KB
/
detect_cla_hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import numpy as np
import pandas as pd
from pathlib import Path
from functools import partial
import argparse
import matplotlib.pyplot as plt
import sklearn.covariance
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from datasets import get_ae_transforms, get_ae_ood_transforms, get_dataset_info, get_dataloader
from models import get_ae, get_classifier
from evaluation import compute_all_metrics
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for t, m, s in zip(tensor, self.mean, self.std):
# t.mul_(s).add_(m)
t.sub_(m).div_(s)
return tensor
def get_hybrid_inner_scores(ae, classifier, data_loader, normalize, combination):
# feature level
ae.eval()
classifier.eval()
complexities = []
scores, similarities, hybrid_scores = [], [], []
for sample in data_loader:
data = sample['data'].cuda()
complexity = sample['complexity']
complexities.extend(complexity.tolist())
with torch.no_grad():
rec_data = ae(data)
data = torch.stack([normalize(img) for img in data], dim=0)
rec_data = torch.stack([normalize(img) for img in rec_data], dim=0)
penultimate_feature = classifier.penultimate_feature(data)
rec_penultimate_feature = classifier.penultimate_feature(rec_data)
score, _ = torch.max(classifier.fc(penultimate_feature), dim=1)
scores.extend(score.tolist())
# calculate the ori & rec similarity
similarity = torch.bmm(penultimate_feature.view(args.batch_size, 1, -1), rec_penultimate_feature.view(args.batch_size, -1, 1))
similarity = torch.squeeze(similarity)
# process the similarity scores
similarities.extend(similarity.tolist())
# change complexities
simi_coefficients = []
for complexity in complexities:
if complexity <= 0.55:
simi_coefficients.append(0.01)
elif complexity < 0.85:
simi_coefficients.append(0.1)
else:
simi_coefficients.append(0.01)
simi_scores = [similarity * simi_coefficient for similarity, simi_coefficient in zip(similarities, simi_coefficients)]
# combine
if combination == 'ori':
return scores
elif combination == 'diff':
return simi_scores
elif combination == 'hybrid':
for score, simi_score in zip(scores, simi_scores):
hybrid_scores.append(score + simi_score)
return hybrid_scores
else:
raise RuntimeError('<--- invalid combination: {}'.format(combination))
def get_hybrid_kl_scores(ae, classifier, data_loader, normalize, combination):
# pred distribution level
ae.eval()
classifier.eval()
complexities = []
scores, differents, hybrid_scores = [], [], []
for sample in data_loader:
data = sample['data'].cuda()
complexity = sample['complexity']
complexities.extend(complexity.tolist())
with torch.no_grad():
rec_data = ae(data)
data = torch.stack([normalize(img) for img in data], dim=0)
rec_data = torch.stack([normalize(img) for img in rec_data], dim=0)
logit = classifier(data)
rec_logit = classifier(rec_data)
softmax = torch.softmax(logit, dim=1)
rec_softmax = torch.softmax(rec_logit, dim=1)
uniform_dist = torch.ones_like(softmax) * (1 / softmax.shape[1])
scores.extend(torch.sum(F.kl_div(softmax.log(), uniform_dist, reduction='none'), dim=1).tolist())
differents.extend(torch.sum(F.kl_div(rec_softmax.log(), softmax, reduction='none'), dim=1).tolist())
# change complexities
diff_coefficients = []
for complexity in complexities:
if complexity <= 0.55:
diff_coefficients.append(2.0)
elif complexity < 0.85:
diff_coefficients.append(0.5)
else:
diff_coefficients.append(1.0)
simi_scores = [-1.0 * different * diff_coefficient for different, diff_coefficient in zip(differents, diff_coefficients)]
# combine
if combination == 'ori':
return scores
elif combination == 'diff':
return simi_scores
elif combination == 'hybrid':
for ori_score, simi_score in zip(scores, simi_scores):
hybrid_scores.append(ori_score + simi_score)
return hybrid_scores
else:
raise RuntimeError('<--- invalid combination: {}'.format(combination))
def sample_estimator(classifier, data_loader, normalize, num_classes, feature_dim_list):
classifier.eval()
group_lasso = sklearn.covariance.EmpiricalCovariance(assume_centered=False)
num_layers = len(feature_dim_list) # num of layers
num_sample_per_class = np.zeros(num_classes)
list_features = [[0] * num_classes] * num_layers
for sample in data_loader:
data = sample['data'].cuda()
target = sample['label'].cuda()
data = torch.stack([normalize(img) for img in data], dim=0)
hidden_features = classifier.feature_list(data)
# get hidden features
for i in range(num_layers):
hidden_features[i] = hidden_features[i].view(hidden_features[i].size(0), hidden_features[i].size(1), -1)
hidden_features[i] = torch.mean(hidden_features[i].data, 2) # shape [batch_size, nChannels]
# construct the sample matrix
for i in range(target.size(0)):
label = target[i]
if num_sample_per_class[label] == 0:
layer_count = 0
for hidden_feature in hidden_features:
list_features[layer_count][label] = hidden_feature[i].view(1, -1)
layer_count += 1
else:
layer_count = 0
for hidden_feature in hidden_features:
list_features[layer_count][label] = torch.cat((list_features[layer_count][label], hidden_feature[i].view(1, -1)), 0)
layer_count += 1
num_sample_per_class[label] += 1
category_sample_mean = []
layer_count = 0
for feature_dim in feature_dim_list:
tmp_list = torch.Tensor(num_classes, int(feature_dim)).cuda()
for j in range(num_classes):
tmp_list[j] = torch.mean(list_features[layer_count][j], 0)
category_sample_mean.append(tmp_list)
layer_count += 1
precision = []
for k in range(num_layers):
X = 0
for i in range(num_classes):
if i == 0:
X = list_features[k][i] - category_sample_mean[k][i]
else:
X = torch.cat((X, list_features[k][i] - category_sample_mean[k][i]), 0)
# find inverse
group_lasso.fit(X.cpu().numpy())
tmp_precision = group_lasso.precision_
tmp_precision = torch.from_numpy(tmp_precision).float().cuda()
precision.append(tmp_precision)
return category_sample_mean, precision
def get_hybrid_maha_scores(ae, classifier, data_loader, num_classes, sample_mean, precision, layer_index, magnitude, std, normalize, combination):
# feature-level
ae.eval()
classifier.eval()
complexities = []
scores, differents, hybrid_scores = [], [], []
for sample in data_loader:
data = sample['data'].cuda()
complexity = sample['complexity']
complexities.extend(complexity.tolist())
with torch.no_grad():
rec_data = ae(data)
data = torch.stack([normalize(img) for img in data], dim=0)
rec_data = torch.stack([normalize(img) for img in rec_data], dim=0)
rec_hidden_feature = classifier.hidden_feature(rec_data, layer_index)
rec_hidden_feature = rec_hidden_feature.view(rec_hidden_feature.size(0), rec_hidden_feature.size(1), -1)
rec_hidden_feature = torch.mean(rec_hidden_feature, 2)
data.requires_grad = True
hidden_feature = classifier.hidden_feature(data, layer_index)
hidden_feature = hidden_feature.view(hidden_feature.size(0), hidden_feature.size(1), -1)
hidden_feature = torch.mean(hidden_feature, 2)
gaussian_score = 0
diff_zero_f = hidden_feature.data - rec_hidden_feature.data
diff_term_gau = 0.5 * torch.mm(torch.mm(diff_zero_f, precision[layer_index]), diff_zero_f.t()).diag()
for i in range(num_classes):
category_sample_mean = sample_mean[layer_index][i]
zero_f = hidden_feature.data - category_sample_mean
term_gau = -0.5 * torch.mm(torch.mm(zero_f, precision[layer_index]), zero_f.t()).diag()
if i == 0:
gaussian_score = term_gau.view(-1, 1)
else:
gaussian_score = torch.cat((gaussian_score, term_gau.view(-1, 1)), 1)
# Input precessing
sample_pred = gaussian_score.max(1)[1]
category_sample_mean = sample_mean[layer_index].index_select(0, sample_pred)
zero_f = hidden_feature - category_sample_mean
pure_gau = -0.5 * torch.mm(torch.mm(zero_f, precision[layer_index]), zero_f.t()).diag()
loss = torch.mean(-pure_gau) + torch.mean(diff_term_gau)
loss.backward()
gradient = torch.ge(data.grad.data, 0)
gradient = (gradient.float() - 0.5) * 2
gradient[:, 0] = gradient[:, 0] / std[0]
gradient[:, 1] = gradient[:, 1] / std[1]
gradient[:, 2] = gradient[:, 2] / std[2]
tmpInputs = torch.add(data.data, -magnitude, gradient)
with torch.no_grad():
noise_out_features = classifier.hidden_feature(tmpInputs, layer_index)
noise_out_features = noise_out_features.view(noise_out_features.size(0), noise_out_features.size(1), -1)
noise_out_features = torch.mean(noise_out_features, 2)
noise_gaussian_score = 0
noise_diff_zero_f = noise_out_features.data - rec_hidden_feature.data
noise_diff_term_gau = 0.5 * torch.mm(torch.mm(noise_diff_zero_f, precision[layer_index]), noise_diff_zero_f.t()).diag()
differents.extend(noise_diff_term_gau.tolist())
for i in range(num_classes):
category_sample_mean = sample_mean[layer_index][i]
zero_f = noise_out_features.data - category_sample_mean
term_gau = -0.5 * torch.mm(torch.mm(zero_f, precision[layer_index]), zero_f.t()).diag()
if i == 0:
noise_gaussian_score = term_gau.view(-1, 1)
else:
noise_gaussian_score = torch.cat((noise_gaussian_score, term_gau.view(-1, 1)), 1)
scores.extend(torch.max(noise_gaussian_score, dim=1)[0].tolist())
# change complexities
diff_coefficients = []
for complexity in complexities:
if complexity <= 0.55:
diff_coefficients.append(2.0) # 1.0 for ablation study, default 2.0
elif complexity < 0.85:
diff_coefficients.append(0.5) # 1.0 for ablation study, default 0.5
else:
diff_coefficients.append(1.0) # 1.0 for ablation study and default
simi_scores = [-1.0 * different * diff_coefficient for different, diff_coefficient in zip(differents, diff_coefficients)]
# combine
if combination == 'ori':
return scores
elif combination == 'diff':
return simi_scores
elif combination == 'hybrid':
for ori_score, simi_score in zip(scores, simi_scores):
hybrid_scores.append(ori_score + simi_score)
return hybrid_scores
else:
raise RuntimeError('<--- invalid combination: {}'.format(combination))
scores_dic = {
'hybrid_inner': get_hybrid_inner_scores,
'hybrid_maha': get_hybrid_maha_scores,
'hybrid_kl': get_hybrid_kl_scores
}
def draw_hist(data, colors, labels, title, fig_path):
plt.clf()
plt.hist(data, bins=100, density=True, histtype='bar', color=colors, label=labels)
plt.xlabel('score')
plt.ylabel('density')
plt.legend(prop={'size': 10})
plt.title(title)
plt.savefig(fig_path)
def main(args):
output_path = Path(args.output_dir) / args.id / args.output_sub_dir
print('>>> Log dir: {}'.format(str(output_path)))
output_path.mkdir(parents=True, exist_ok=True)
ae_transform = get_ae_transforms('test')
means, std = get_dataset_info(args.id, 'mean_and_std')
normalize = Normalize(means, std)
get_dataloader_default = partial(
get_dataloader,
root=args.data_dir,
split='test',
batch_size=args.batch_size,
shuffle=False,
num_workers=args.prefetch
)
id_loader = get_dataloader_default(name=args.id, transform=ae_transform)
ood_loaders = []
for ood in args.oods:
ood_transform = get_ae_ood_transforms(ood, 'test')
ood_loaders.append(get_dataloader_default(name=ood, transform=ood_transform))
# -------------------- ae & classifier -------------------- #
ae = get_ae(args.ae)
num_classes = len(get_dataset_info(args.id, 'classes'))
classifier = get_classifier(args.classifier, num_classes)
ae_path = Path(args.ae_path)
classifier_path = Path(args.classifier_path)
if ae_path.exists():
ae_params = torch.load(str(ae_path))
rec_err = ae_params['rec_err']
ae.load_state_dict(ae_params['state_dict'])
print('>>> load ae from {} (rec err {})'.format(str(ae_path), rec_err))
else:
raise RuntimeError('---> invalid ae path: {}'.format(str(ae_path)))
if classifier_path.exists():
cla_params = torch.load(str(classifier_path))
cla_acc = cla_params['cla_acc']
classifier.load_state_dict(cla_params['state_dict'])
print('>>> load classifier from {} (classification acc {:.4f}%)'.format(classifier_path, cla_acc))
else:
raise RuntimeError('---> invalid classifier path: {}'.format(str(classifier_path)))
gpu_idx = int(args.gpu_idx)
if torch.cuda.is_available():
torch.cuda.set_device(gpu_idx)
ae.cuda()
classifier.cuda()
cudnn.benchmark = True
# -------------------- inference -------------------- #
get_scores = scores_dic[args.scores]
result_dic_list = []
if args.scores == 'hybrid_maha':
num_layers = 1
feature_dim_list = np.empty(num_layers)
feature_dim_list[0] = 128 # for wide_resnet
sample_mean, precision = sample_estimator(classifier, id_loader, normalize, num_classes, feature_dim_list)
id_scores = get_hybrid_maha_scores(ae, classifier, id_loader, num_classes, sample_mean, precision, num_layers-1, args.magnitude, std, normalize, args.combination)
else:
id_scores = get_scores(ae, classifier, id_loader, normalize, args.combination)
id_label = np.zeros(len(id_scores))
for ood_loader in ood_loaders:
result_dic = {'name': ood_loader.dataset.name}
if args.scores == 'hybrid_maha':
ood_scores = get_hybrid_maha_scores(ae, classifier, ood_loader, num_classes, sample_mean, precision, num_layers-1, args.magnitude, std, normalize, args.combination)
else:
ood_scores = get_scores(ae, classifier, ood_loader, normalize, args.combination)
ood_label = np.ones(len(ood_scores))
scores = np.concatenate([id_scores, ood_scores])
labels = np.concatenate([id_label, ood_label])
result_dic['fpr_at_tpr'], result_dic['auroc'], result_dic['aupr_in'], result_dic['aupr_out'] = compute_all_metrics(scores, labels, verbose=False)
result_dic_list.append(result_dic)
print('---> [ID: {:7s} - OOD: {:9s}] [auroc: {:3.3f}%, aupr_in: {:3.3f}%, aupr_out: {:3.3f}%, fpr@95tpr: {:3.3f}%]'.format(
id_loader.dataset.name, ood_loader.dataset.name, 100. * result_dic['auroc'], 100. * result_dic['aupr_in'], 100. * result_dic['aupr_out'], 100. * result_dic['fpr_at_tpr']))
# plot hist
hist_scores = [id_scores, ood_scores]
colors = ['lime', 'red']
labels = ['id', 'ood']
title = '-'.join([ood_loader.dataset.name, args.id, args.scores])
fig_path = output_path / (title + '.png')
draw_hist(hist_scores, colors, labels, title, fig_path)
# save result
result = pd.DataFrame(result_dic_list)
log_path = output_path / (args.scores + '.csv')
result.to_csv(str(log_path), index=False, header=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Detect OOD using ori_score - coefficient * diff')
parser.add_argument('--data_dir', type=str, default='/home/iip/datasets')
parser.add_argument('--output_dir', help='dir to store log', default='logs')
parser.add_argument('--output_sub_dir', help='sub dir to store log', default='hybrid_cla-maha')
parser.add_argument('--id', type=str, default='cifar10')
parser.add_argument('--oods', nargs='+', default=['svhn', 'lsunc', 'dtd', 'places365_10k', 'cifar100', 'tinc', 'lsunr', 'tinr', 'isun'])
parser.add_argument('--ae', type=str, default='res_ae')
parser.add_argument('--ae_path', type=str, default='./snapshots/cifar10/rec.pth')
parser.add_argument('--classifier', type=str, default='wide_resnet')
parser.add_argument('--classifier_path', type=str, default='./snapshots/cifar10/wrn.pth')
parser.add_argument('--scores', type=str, default='hybrid_maha')
parser.add_argument('--combination', type=str, default='hybrid') # ori, diff, hybrid
parser.add_argument('--magnitude', type=float, default=0.0)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--prefetch', type=int, default=4)
parser.add_argument('--gpu_idx', type=int, default=0)
args = parser.parse_args()
main(args)